Search

Begin New Search
Proceed to Checkout

Search Results for All:
(Showing results 1 to 3 of 3)



Comparing Greenhouse Gases for Policy Purposes

Richard Schmalensee

Year: 1993
Volume: Volume 14
Number: Number 1
DOI: 10.5547/ISSN0195-6574-EJ-Vol14-No1-10
View Abstract

Abstract:
In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions from different gases must be compared. The greenhouse warming potential (GWP) index, which is most often used to compare greenhouse gases, is not based on such a damage comparison. This essay presents assumptions under which ratios of gas-specific discounted marginal damages reduce to ratios of discounted marginal contributions to radiative forcing, where the discount rate is the difference between the discount rate relevant to climate-related damages and the rate of growth of marginal climate-related damages over time. If there are important gas-specific costs or benefits not tied to radiative forcing, however, such as direct effects of carbon dioxide on plant growth, there is in general no shortcut around explicit comparison of discounted net marginal damages.



Long-Term Multi-Gas Scenarios to Stabilise Radiative Forcing - Exploring Costs and Benefits Within an Integrated Assessment Framework

D.P. van Vuuren, B. Eickhout, P.L. Lucas and M.G.J. den Elzen

Year: 2006
Volume: Multi-Greenhouse Gas Mitigation and Climate Policy
Number: Special Issue #3
DOI: 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-10
View Abstract

Abstract:
This paper presents a set of multi-gas mitigation scenarios that aim for stabilisation of greenhouse gas radiative forcing in 2150 at levels from 3.7 to 5.3 W/m2. At the moment, non-CO2 gasses (methane, nitrous oxide, PFCs, HFCs and SF6) contribute to about a quarter of the global emissions. The analysis shows that including these non-CO2 gases in mitigation analysis is crucial in formulating a cost-effective response. For stabilisation at 4.5 W/m2, a multi-gas approach leads to 40% lower costs than an approach that would focus at CO2only. Within the assumptions used in this study, the non-CO2 gasses contribution to total reduction is very large under less stringent targets (up to 60%), but declines under stringent targets. While stabilising at 3.7 W/m2 obviously leads to larger environmental benefits than the 4.5 W/m2 case (temperature increase in 2100 are 1.9 and 2.3oC, respectively), the costs of the lower target are higher (0.80% and 0.34% of GDP in 2100, respectively). Improving knowledge on how future reduction potential for non-CO2 gasses could develop is shown to be a crucial research question.



Multigas Mitigation: An Economic Analysis Using GRAPE Model

Atsushi Kurosawa

Year: 2006
Volume: Multi-Greenhouse Gas Mitigation and Climate Policy
Number: Special Issue #3
DOI: 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-13
View Abstract

Abstract:
Future global warming may depend strongly on the potential for abating emissions of greenhouse gases (GHGs). Flexibility in implementing climate change mitigation policies can significantly reduce mitigation costs and has three dimensions; space, time and gas species. Therefore, multiple greenhouse gas reduction flexibility should be considered. The emission and reduction potential of CO2 and non-CO2 GHGs are assessed here using an integrated assessment model under climate change targets. The implications on gas life as well as abatement timing uncertainty on costs, technological availability, etc. are discussed. The introduction of additional multigas reductions will cut the economic burden of achieving a given climate change target. The conclusions are threefold; (1) Multigas mitigation is a cost effective strategy compared to CO2-only mitigation under the same climate target, (2) CO2 mitigation is expected to lead to ancillary reductions in CH4, N2O and SOx emissions, and (3) There is great uncertainty in the assessment of non-CO2 GHG mitigation opportunities.





Begin New Search
Proceed to Checkout

 

© 2021 International Association for Energy Economics | Privacy Policy | Return Policy