Search

Begin New Search
Proceed to Checkout

Search Results for All:
(Showing results 1 to 2 of 2)



Deconstructing Solar Photovoltaic Pricing

Kenneth Gillingham, Hao Deng, Ryan Wiser, Naim Darghouth, Gregory Nemet, Galen Barbose, Varun Rai, and Changgui Dong

Year: 2016
Volume: Volume 37
Number: Number 3
DOI: 10.5547/01956574.37.3.kgil
View Abstract

Abstract:
Solar photovoltaic (PV) system prices in the United States display considerable heterogeneity both across geographic locations and within a given location. Such heterogeneity may arise due to state and federal policies, differences in market structure, and other factors that influence demand and costs. This paper examines the relative importance of such factors on equilibrium solar PV system prices in the United States using a detailed dataset of roughly 100,000 recent residential and small commercial installations. As expected, we find that PV system prices differ based on characteristics of the systems. More interestingly, we find evidence suggesting that search costs and imperfect competition affect solar PV pricing. Installer density substantially lowers prices, while regions with relatively generous financial incentives for solar PV are associated with higher prices.



Rethinking the Role of Financial Transmission Rights in Wind-Rich Electricity Markets in the Central U.S.

James Hyungkwan Kim, Mark Bolinger, Andrew D. Mills, and Ryan Wiser

Year: 2023
Volume: Volume 44
Number: Number 6
DOI: 10.5547/01956574.44.6.jkim
View Abstract

Abstract:
Transmission congestion can cause a divergence between wholesale power prices at the individual pricing nodes where power is generated and the more-liquid trading hubs where that power is often delivered and sold. This nodal price difference is commonly referred to as the "locational basis" (or just "basis"). Because the basis varies over time, it can—if not hedged—unpredictably affect a wind plant's revenue and/or value, which increases investor risk and potentially slows deployment. We find wind plants typically face a larger and more-negative basis than do thermal generators, and hence are more-negatively impacted by congestion. Moreover, while most thermal generators can effectively hedge basis risk by purchasing conventional fixed-volume financial transmission rights (FTRs), these fixed-volume FTRs do not effectively hedge basis risk for variable wind generation. More-effective hedging mechanisms may be required to support those generators most-impacted by congestion, and to promote continued investment in variable generation resources in congested markets.





Begin New Search
Proceed to Checkout

 

© 2025 International Association for Energy Economics | Privacy Policy | Return Policy