Search

Begin New Search
Proceed to Checkout

Search Results for All:
(Showing results 1 to 2 of 2)



The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs

Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertrand Magne, Serban Scrieciu, Hal Turton, Detlef P. van Vuuren

Year: 2010
Volume: Volume 31
Number: Special Issue
DOI: 10.5547/ISSN0195-6574-EJ-Vol31-NoSI-2
View Abstract

Abstract:
This study gives a synthesis of a model comparison assessing the technological feasibility and economic consequences of achieving greenhouse gas concentration targets that are sufficiently low to keep the increase in global mean temperature below 2 degrees Celsius above pre-industrial levels. All five global energy-environment-economy models show that achieving low greenhouse gas concentration targets is technically feasible and economically viable. The ranking of the importance of individual technology options is robust across models. For the lowest stabilization target (400 ppm CO2 eq), the use of bio-energy in combination with CCS plays a crucial role, and biomass potential dominates the cost of reaching this target. Without CCS or the considerable extension of renewables the 400 ppm CO2 eq target is not achievable. Across the models, estimated aggregate costs up to 2100 are below 0.8% global GDP for 550 ppm CO2 eq stabilization and below 2.5% for the 400 ppm CO2 eq pathway.



Technology Options for Low Stabilization Pathways with MERGE

Bertrand Magne, Socrates Kypreos, and Hal Turton

Year: 2010
Volume: Volume 31
Number: Special Issue
DOI: 10.5547/ISSN0195-6574-EJ-Vol31-NoSI-4
View Abstract

Abstract:
This paper investigates long-term transitions of the global energy system compatible with realizing low stabilization climate targets, using an enhanced MERGE model. The results indicate that stringent mitigation targets can be met under many technology scenarios, but major technological change is needed, highlighting important roles for R&D and learning-by-doing. The analysis explores the impact of limiting the set of available technology options (to account for technical uncertainties and issues of public acceptance) and identifies important influences on energy system development and economic costs under low stabilization. Biomass availability is seen to have a major influence on the characteristics of the energy system. Carbon capture and storage technologies also prove to be potentially critical for both electricity and fuel synthesis, particularly when combined with biomass to produce net negative emissions. Additionally, the availability of fast breeders provides a competitive zero-emissions option. Energy efficiency and large-scale application of renewables are also critical to realising low stabilization scenarios.





Begin New Search
Proceed to Checkout

 

© 2024 International Association for Energy Economics | Privacy Policy | Return Policy