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Abstract: 

This paper aims to contribute to the literature on mass electrification by investigating the comparative 

performances of three mass electrification algorithms. The first two are the algorithms by (Parshall et 

al., 2009) and (Deichmann et al., 2011). Whilst these are cited in the literature a comparative analysis 

of their performances had not been conducted. This paper introduces a third algorithm known as the 

multiobjective genetic algorithm for partial grid electrification (MOGA-PGE). All three algorithms 

are designed to minimise the total costs of universal electrification through optimal allocation of 

electrification sources among un-electrified settlements in countries with low pre-existing electricity 

infrastructure. The paper considers a case study of Ghana and subjects the algorithms to three 

electrification sources namely the centralised Ghanaian grid network, standalone solar photovoltaics 

(PVs) and standalone wind turbines. In simulating these algorithms, this paper explicitly accounts for 

the existing electricity infrastructure in the country. Sensitivity analysis on the existing reference 

algorithms shows that they have varying sensitivities to the cost factors of electrification. The result 

also shows that all three algorithms have varying outcomes for the total costs of universal 

electrification and the composition of electrification sources. It also shows that the algorithms are 

practical in the sense that a priori expectations of an ideal mass electrification outcome were realised 

for all three. 

Keywords: cost minimisation, mass electrification, algorithms, comparative analysis, grid, renewable 

energy 

1. Introduction 

According to the International Energy Agency (IEA, 2010), over 1.6 billion of the world’s population 

mostly living in rural regions of developing countries have no access to electricity. The literature 

suggests that lack of access to affordable and reliable electricity is a major determinant of poverty in 

these regions. Access to electricity has been shown to have significant health benefits for rural 

households as it is essential for domestic usage such as lighting and cooking and for powering 

equipment in medical facilities. A study by the Independent Energy Group (2008) showed that indoor 

lighting and cooking that is typical of un-electrified rural communities increases the risk of early 

death by a factor of five. An Energy Management Assistance Program (2003) study also shows that 

students in electrified homes have higher education levels than their counterparts in un-electrified 

homes because electricity allows the former to study for longer periods, get higher grades and as a 

result stay longer in school. This leads to opportunities for upward mobility in society hence poverty 

reduction. At a national level, opportunities for economic activity resulting from access to electricity 

may contribute significantly to poverty reduction.  
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In many Sub Saharan Africa (SSA) countries, urban populations remain underserved by inefficient 

and unreliable centralised national grids whilst fewer than 10% of rural communities have any access 

to electricity at all (Parshall et al. 2009). For electricity planners in these countries, extensions of the 

centralised grid to only a subset of un-electrified settlements is the realistically attainable paths to 

further centralised grid electrification in the short to medium term. Constraints confronting planners 

may be technical (i.e. insufficient grid generation capacity, ageing and failing transmission and 

distribution infrastructure, geographic barriers to grid extensions, etc); and considerations may be 

economic (i.e. the economics of supply for sparsely populated and remotely located settlements, 

unwillingness to pay for electricity due to poverty, etc) and/or socio-political (i.e. political targeting of 

mass electrification as policy tool for poverty reduction), etc. Meanwhile the potential for 

decentralised systems such as solar, wind, hydro, geothermal, biofuels, diesel generators, etc for rural 

communities in these countries is enormous. In Namibia for example, annual potential production 

from renewable energy sources is about a hundred times the current energy consumption under 

realistic assumptions of technical feasibility (Deichmann et al. 2011). Other SSA countries such as 

Senegal, Sierra Leone and Benin have annual renewable generation potential of about 10-12 times 

their current electricity consumption. Further, the costs of renewable energy technologies are 

forecasted to decrease over time due to technological advancements in their development.  

 

In designing least cost strategies for increasing access to electricity in these countries key questions 

include what the balance should be between the extensions of the electricity grid versus the use of 

stand-alone technologies, and for those locations where grid extension is considered best what is the 

least cost way of extending the grid to these communities?   

 

There have been a large number of mathematical programming studies addressing different aspects of 

the problem of electrification. Many of these methods are focused on the gridded network aspects of 

electrification and employ mathematical programming techniques such as mixed-integer-

programming (Adams et al 1974; Gonen et al 1981; Hongwei et al. 1993; Bouchard et al. 1995; Lin, 

Chin 1998; Ramirez-Rosado et al. 1999; Kocaman et al. 2012).  Despite their theoretical 

attractiveness, the complexity and multi-layered nature of the problem combined with the fact that 

planners are likely to make decisions on extending in a sequential manner have limited the usefulness 

of programming approaches which aim to find a global optimal solution. 

 

An alternative approach which has been extensively employed has been to employ heuristic methods 

based on sensible sequential rules to find ‘good’ solutions (Deichmann et al. 2011; Parshall et al. 

2009; Zvoleff et al. 2009; Kaijuka, 2007).  They do not require network planners to solve complex 

mathematical programming problems, although the heuristic may employ simple optimization 

methods for elements of the solution.  In theory they also lend themselves more naturally to reality of 

incremental extension of the network.  By definition, being ad hoc there is no measure of the degree 

to which these heuristic approaches approach optimality. Planners also have often multiple objectives 

and neither the programming nor the heuristic approach has typically taken these into account.  

Genetic Algorithms provide a potential alternative method where multi-objectives may be taken into 

account while searching for a global optimum.  These methods have been used to determine the 

partitioning of a electricity grid into power districts (Bergey et al. 2003).   

 

While a range of different approaches to the appropriate balance between grid and standalone 

renewables and the optimal extension of the electricity network have been undertaken, there has no 

analysis of  comparative performance of these applied to real world problem.  The aim of this paper is 

to consider the relative performance of the heuristics used by Deichmann et al. (2011) (the DA 
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algorithm) and by Parshall et al. 2009 (the PA algorithm), with a Multi-Objective Genetic Algorithm 

(the MOGA-PGE algorithm) in finding the best balance between network extension and standalone 

renewables (solar and wind) in Ghana in terms of levelised costs.    

 

Previous studies have noted the influence of the geography of a country on the outcomes (Zvoleff et 

al. 2009), and it is likely that that performance of the algorithms will also be affected by the country’s 

geography and the nature of the problem formulation.  Therefore to ensure the problem formulation is 

as close to the one faced by Ghanaian planners as possible, we take the existing Ghanaian network as 

the starting point rather than assuming that no network exists (Deichmann et al., 2011).   

 

The rest of the paper is organised as follows.  Section 2 discusses the three different approaches to 

consider the grid expansion versus standalone renewables.  Section 3 discusses the Geographic 

Information Systems (GIS) data and other Ghanaian data sources and transformations used in the 

analysis.   Section 4 discusses the results and Section 5 briefly concludes. 

 

2. Heuristic versus GA Algorithms  

2.1 The DA Algorithm. 

Deichmann et al. (2011) studied the feasibility of decentralised energy services in SSA with emphasis 

on Ethiopia, Ghana and Kenya. In doing so they developed a spatially explicit algorithm that 

‘estimates the comparative costs of network and decentralised electricity provision’ (Deichmann et al. 

2011) across countries with low pre-existing electricity network coverage. The algorithm determines 

settlements within a country where alternative electricity generation sources are competitive relative 

to grid electricity. The DA algorithm essentially seeks to solve the network feeder routing 

optimisation problem, the objective function of which is to minimise the total length of transmission 

and distribution line connections in the electricity network. It adopts Prim’s (1957) variation of the 

Minimum Spanning Tree (MST) algorithm that is used extensively in routing optimisation. At each 

step of the MST algorithm, the shortest segment emanating from the set of settlements already present 

in the network to the set of un-electrified settlements is selected. Segments that would create a loop 

are avoided. In the MST variation being adopted by the DA algorithm, least inter-nodal connection 

lengths are minimised. 

The DA algorithm begins with a setup of n un-electrified demand settlements and k power generation 

plants or bulk supply points (BSP). The algorithm works under the assumption that there are more 

demand settlements in the network than there are BSPs. The algorithm sets out by assigning the 

(k+1)th BSP of the network to the un-electrified demand settlement with the highest aggregate 

electricity demand in the network. The BSP assigned settlement is connected to the nearest existing 

generation plant or BSP settlement with a high voltage (HV) transmission line, thus forming part of 

the set of BSP settlements in the extended transmission network. All the un-electrified demand 

settlements within the technically feasible threshold distance of 120km of this BSP settlement are then 

connected to the BSP settlement using medium voltage (MV) distribution lines. The MV connection 

from the assigned BSP settlement to the settlements identified within its threshold is done via Prim’s 

(1957) MST algorithm. The BSP settlement and all the connected demand settlements to it form a 

distinct geographic zone in the algorithm. Household to household connections in the individual 

settlements of the geographic zone are made via low voltage (LV) distribution line routing. 
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In subsequent steps, the DA algorithm repeats the above procedure; it assigns a BSP to the next 

largest demand settlement, connects the BSP settlement via HV wiring to the nearest generation 

plant/BSP settlement in the transmission network, determines the remaining un-electrified demand 

settlements within the threshold distance of the assigned BSP settlement and then connects them via 

MV wiring using Prim’s MST algorithm.  This procedure is repeated until all of the un-electrified 

demand settlements within the subject country are within a BSP/geographic zone. The algorithm then 

terminates. 

Each sequential step of the DA algorithm represents an investment stage. After defining the 

geographic horizon for that stage and calculating its levelised cost of grid electricity, it also calculates 

the levelised cost of investments in alternative generation sources of electricity for the same 

geographic zone. Alternative generation sources in this study include only standalone 500W solar PVs 

and 450W wind turbine systems.   Finally the DA algorithm when terminated shows the levelised 

costs of all technologies for all the geographic zones. All geographic zones are served with their least 

levelised cost technology.  

2.2 The PA Algorithm. 

Parshall et al. (2009) developed a spatial electricity planning algorithm ‘to guide grid expansion in 

countries with low pre-existing electricity coverage’. The PA algorithm is similar to the DA algorithm 

in its objective which is to minimise the total cost of universal electrification; and its consideration of 

alternative generation sources to identify the extent of grid extension. Like the DA algorithm, the PA 

algorithm is sensitive to electricity demand and the geographic characteristics of the subject country. 

Parshall et al. (2009) modelled Kenya in their study.  

The PA algorithm begins by computing the internal grid levelised cost for all the un-electrified 

settlements in the subject country individually. The internal grid levelised cost is a function of all 

intra-nodal investments in LV lines, MV lines, transformers and the internal cost of providing grid 

produced electricity in the settlement over the planning horizon. It does not include the cost of 

extending the MV or HV backbone of the national grid to the settlement. Each settlement is evaluated 

individually and internally. The algorithm also calculates the levelised cost of the decentralised 

alternative generation sources being considered i.e. standalone PVs and standalone wind turbines for 

all the un-electrified settlements individually.  

Having determined the intra-nodal levelised costs of decentralised technologies and the intra-nodal 

internal grid levelised cost of the settlements, the algorithm compares the internal grid levelised cost 

of each settlement with the levelised costs of the decentralised technologies under considerations.  If 

the internal grid levelised cost for an un-electrified settlement is greater than the levelised cost of at 

least one of the decentralised technologies being considered, the settlement is marked to be 'ineligible' 

for grid connection. Such a settlement is served with the least cost decentralised technology being 

considered i.e. either standalone PVs or standalone wind turbines, whichever has the lowest levelised 

cost.  If the internal grid levelised cost for an un-electrified settlement is less than the levelised cost of 

all decentralised technologies being considered for the settlement, the settlement is identified to be 

'eligible' for grid connection and is assigned metric called MVmax. The MVmax metric for an eligible 

settlement is defined as the maximum allowable MV extension length from the national grid to the 

settlement such that the total levelised cost (i.e. internal levelised cost plus levelised cost from MV 

extension) for the settlement is less than or equal to the levelised cost of the least cost decentralised 

option for the settlement.  
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At each iteration of the algorithm, one eligible un-electrified settlement is connected to the national 

grid. The connected settlement is served with an MV extension that is less than or equal to its 

MVmax. These connections are based on Prim’s (1957) MST algorithm.  The algorithm terminates 

when all or at least one of the following conditions are reached; i) all eligible un-electrified 

settlements have been connected to the network; ii) the MVmax of all remaining eligible un-electrified 

settlements is greater than the MV backbone length needed to connect the settlements to the national 

grid.  

The determination of levelised costs of grid and decentralised alternative generation sources for the 

individual settlements in the PA algorithm is similar to the procedure outlined for costing in the DA 

algorithm with the only difference being that the PA algorithm determines these costs for individual 

settlements unlike the DA algorithm’s determination of these costs for geographic zones. Another 

important difference is that unlike the DA algorithm where the HV transmission is considered and 

levelised costs for grid and alternative generation sources are determined sequentially at each stage, 

HV transmission is not considered in the PA algorithm and levelised costs in the PA are entirely 

determined in the first step of the algorithm for individual settlements. 

2.3 Multi-objective Genetic Algorithm (MOGA-PGE) 

 

The MOGA-PGE algorithm executes in two phases
1
. Phase-I involves, given a total of m un-

electrified settlements in a country, the optimal selection of a subset of n un-electrified settlements 

(   ) for electrification via the extension of the existing national grid.  Optimality in the selection 

of these settlements is in respect of three objectives found to be the most important cost factors by 

Nguyen (2007). These are maximising the population in the selected settlements, minimising the 

average distance of the selected settlements from the existing national grid and maximising the degree 

of clustering in the selection.
2
  Phase-I is designed as a multiobjective combinatorial optimisation 

procedure and is achieved in the MOGA-PGE via multiobjective GA optimisation. Phase-II of the 

MOGA-PGE involves two processes. Firstly, the optimal least cost networking of the n selected 

settlements from Phase-I to the existing national grid using MV distribution lines for inter-settlement 

connections and LV lines for intra-settlement connections. These are achieved via Prim’s (1957) 

minimum spanning tree algorithm (MST). Second is the optimal allocation of decentralised 

technologies for the remaining     un-electrified settlements. This is achieved by simply allocating 

these settlements with their least cost decentralised technologies.  As in the DA and PA algorithms, 

we specifically consider a 500W household sized solar panel and a 450W household sized wind 

turbine as the stand alone alternatives to the grid.  After Phase-I and Phase-II of the MOGA-PGE, the 

total cost of universal electrification is the cost of centralised grid electrification and decentralised 

grid electrification. By processing the MOGA-PGE for varying levels of n, electricity planners can 

generate the cost profile of universal electrification for a set of un-electrified settlements. The cost 

profile shows the least cost selection solution for universal electrification.  

 

 

                                                           

1
 Phase I is executed in MATLAB R2012a (2012) and Phase II is executed in GAMS v.23.8 (2013). 

2
 As proxy for density of a selection of settlements, we use the nearest neighbour index (NNI). This is a measure 

of the degree of clustering in the spatial distribution of structures. 
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3. Data. 

Ghana has a low pre-existing electricity infrastructure with network coverage of about 70% only and 

it is representative of many countries in SSA.  The major power generation plants in Ghana include 

three major hydro plants controlled by the Volta River Authority (VRA) and thermal generation 

plants owned by independent power producers (IPPs).  There are also 28 major bulk supply points 

(BSP) mostly located in highly populated and dense settlements across the country (Bergey et al, 

2003).. The transmission network (see Figure 1) is operated and controlled by the Ghana Grid 

Company (GRIDCo) which is an independent institution. According to GRIDCo (2012), Ghana’s 

transmission grid currently comprises of about 4182km of HV transmission lines and 2915MVA of 

transformer capacity.   The location of the generation plants, BSPs and the transmission network are 

incorporated in the DA, PA and MOGA-PGE algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data on all un-electrified communities in Ghana were sourced from the European Union Energy 

Initiative-Partnership Dialogue Facility (EUEI-PDF) who sponsored a survey of all un-electrified 

settlements in Ghana in 2010. The coordinates, populations and other demographic and economic 

variables for the over 2700 surveyed settlements were accounted for in the survey data. Figure 2 

above shows the geographic locations of the electrified and un-electrified settlements in Ghana; 

Levelised costs calculations for both grid extension uses a standard approach (Deichmann, et al. 2011) 

and covering MV lines, LV lines and transformers with regards their initial capital investment costs 

and the operations and maintenance cost over the 40 year planning period. Similarly estimates for the 

standalone systems include capital, operating, battery and controller costs.  In order to ensure ‘like-

for-like’ comparison of the algorithms, some of grid components covered by Parshall et al. (2011) 

 

Figure 1: The transmission network in 

Ghana; digitised from Bergey et al 

(2003) and updated to include other 

links. 

 

Figure 2: Distribution of electrified 

and un-electrified settlements in 

Ghana.        
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were not costed such as bulk supply points, static var compensators, breaker switched capacitors, etc.  

These are not accounted for in the simulation of the PA algorithm and were therefore not costed.  We 

assume that there is an average of 5 people per household in all settlements and that each household 

demands 4kWh/day of electricity. With these assumptions, the demand for electricity at each of the 

un-electrified settlements can be calculated.   

 

4. Results 

4.1 DA and PA algorithms 

Below, we first consider the comparative performances of the DA and PA algorithms.  To provide an 

initial base for comparison we initially ran the two algorithms for the case where all households are 

provided with access to electricity via the grid.  From these results the discounted cost of universal 

grid electrification over a 40 year period using the DA and PA algorithms are similar amounting to 

$8.87 billion and $8.81 billion respectively, extension involving around twelve thousand kilometres of 

grid extension. These estimates constitute about 20% of the country’s GDP of about $40 billion in 

2012 (Ghana Statistical Service, 2012), and highlight the significant and current infeasibility of 

providing grid access to all households.  

 
Base Case 

Double Household 

Demand 

50% Reduction 

Stand-Alone Costs 

 
DA PA DA PA DA PA 

No. of grid settlements 524 768 2239 1350 141 535 

Total MV length 2185 6509 9737 8557 671 5323 

Grid costs, $ billion 1.37 2.03 7.80 4.31 0.44 1.35 

No. of solar settlements 2191 1874 476 1292 2574 2107 

No. of solar panel 

(million) 
5.02 2.76 1.37 2.44 6.10 3.59 

Solar panel costs, $ billion 4.93 2.51 1.34 2.22 4.70 2.50 

No. of wind settlements 4 77 4 77 4 77 

No. of wind turbines 682 11702 1364 23405 682 11702 

Wind turbine Costs, $ 

million 
1.28 27.70 2.56 55.40 1.03 23.40 

Total costs, $ billion 6.31 4.57 9.15 6.59 5.14 3.87 

Table 1:  Standalone versus Grid Extension:  DA and PA algorithms results  

Table 1 shows the outcomes of both algorithms when wind and solar PV standalone generation 

sources are included as alternatives, under various assumptions.  Columns 1 and 2 represent the 

outcomes for the base assumptions discussed in section 3.  We can see from the results that the 

inclusion of decentralised alternative generation sources significantly reduces the total MV length of 

the centralised grid network for both algorithms. The reduced role of the centralised grid underscores 

the importance of the alternative generation sources in expanding accessibility to electricity in settings 

with low pre-existing electricity infrastructure. In the DA algorithm, the length of the centralised grid 

reduced by about 87% to accommodate over 2000 settlements for allocating solar PV units; and 4 

settlements for allocating wind turbine units. Since the allocations of these technologies to settlements 

are based on levelised costs, the implication of the inclusion of solar and wind turbine units is that 
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their total costs is less than the cost of the foregone grid network wiring. This yielded a 32% total 

reduction in the cost of universal electrification. In the PA algorithm the length of the centralised grid 

network reduced by about 44% to accommodate over 1800 settlements for allocating solar PV units 

and about 77 settlements for allocating wind turbine units. Total cost reduction as a result of the 

inclusion of alternative generation is about 48%.  

Columns 3 and 4 provide basic sensitivity analysis when household demand doubles the base 

assumption.  Doubling the demand for electricity increased the base scenario MV length of the 

centralised grid network for the DA and PA algorithms by 345% and 31% respectively whilst 

reducing the role of decentralised technologies in both algorithms. Overall, the DA algorithm shows a 

greater sensitivity to demand increases than the PA algorithm. It increased the role of the centralised 

grid whilst reducing the role of the decentralised alternatives by greater percentages when demand 

was doubled from the assumed base figure of 4kWh. Likewise it decreased the role of the centralised 

grid whilst increasing the role of the decentralised technologies by greater percentages when daily 

average household demand was halved.  

Columns 5 and 6 show the impact when reduced stand-alone technology costs are halved which is 

important to consider given the downward trend costs over time.   The result indicates that the role of 

the centralised grid network in the base scenario reduces significantly in both algorithms whilst the 

role of decentralised solar units increases significantly due to lower capital costs of decentralised 

units. Total electrification costs for the DA and PA algorithms reduced by 19% and 15% respectively 

indicating the importance of the cost of alternative generation units in mass electrification.  

4.2 MOGA-PGE algorithm 

As the MOGA-PGE algorithm considers multi-objectives, the nature of the results are somewhat 

different.  The runs for Phase I of the MOGA-PGE were conducted in increments of 25 settlements 

for n = 25 to n = 2600 settlements (i.e. n=25, n=50, n=75, …, n=2600), where n is the prespecified 

number of settlements marked for grid extension at each trial. This yields a total of 104 trials. 
3
   Each 

trial results multiple Pareto solutions. By definition, all Pareto solutions are equally efficient but the 

total cost of electrification for choosing either Pareto solution is different.   Pareto selection strategies 

are therefore important especially for large problems such as the one being considered in this paper. 

Figure 3 below is an example Pareto front with 104 solutions for n = 1000 in the main data; 

                                                           

3
 For each of these trials, the algorithm used the following exogenous GA parameters; Number of generations = 

100, Crossover rate = 1.0, Mutation rate = 0.01. 
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Figure 3: An example non-dominated (Pareto) front of 104 solutions for n = 1000.  

Below we present the cost profiles of electrification for different Pareto selection strategies for the 

Ghana data and compare the performance of the MOGA-PGE with the DA and PA algorithms. 

4.3 Pareto Selection Strategies. 

Since there are multiple Pareto solutions for each of the 104 trials, we have opted to investigate 3 

solutions for each trial. These are the extreme point Pareto solutions that are characteristic of all trials. 

Extreme point Pareto solutions have the property that one objective function is optimised whilst the 

best attainable tradeoffs in the remaining objectives are sought.  

Under the first selection strategy, we choose the extreme point Pareto solution with maximum 

Population in each of the 104 trials. The cost profile of this selection strategy is as follows; 

 

Figure 4: Cost profile for Population Pareto Selection Strategy  
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Figure 4 above indicates that for the current selection strategy, the least cost base scenario MOGA-

PGE solution occurs for n=100 settlements at a total electrification cost of $5.87 billion over the 40 

year planning period. Interestingly, the MOGA-PGE solution compares favourably with the base 

scenario solution of the DA algorithm in two respects. Firstly, the optimum cost of the MOGA-PGE 

solution is lower than the cost of the base scenario DA algorithm solution. Secondly, for the same 

number of settlements to be connected to the grid as predicted by the DA algorithm (i.e. 524 

settlements), the MOGA-PGE is still a cost effective solution than the DA algorithm. The base 

scenario PA algorithm solution however is the best cost effective solution of the three.  

In the second Pareto selection strategy, we choose the extreme point Pareto solution with minimal 

average distance to the grid for the set of selected settlements in each of the 104 trials. The cost 

profile of this selection strategy is as follows; 

 

Figure 5: Cost profile for Average Distance Pareto Selection Strategy  

Figure 5 above indicates that for the current selection strategy, the least cost base scenario MOGA-

PGE solution occurs for n=50 settlements at a total electrification cost of $6.08 billion over the 40 

year planning period. This solution is better than that of the base scenario DA algorithm. For the same 

number of predicted settlements for grid electrification in the DA algorithm however, the MOGA-

PGE solution is worse than the cost of the DA algorithm.  It does indicate, consistent with the Nguyen 

(2007), that minimising the set average distance to the grid has a lower significant influence on cost 

relative to the population selection mechanism. 

Under the final selection strategy, we choose the extreme point Pareto solution with minimal value of 

the nearest neighbour index, Rn for the set of selected settlements in each of the 104 trials. The cost 

profile of this selection strategy is as follows; 
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Figure 6: Cost profile for Nearest Neighbour Pareto Selection Strategy  

Figure 6 above indicates that for the current selection strategy, the least cost base scenario MOGA-

PGE solution occurs for n=25 settlements at a total electrification cost of $6.08 billion over the 40 

year planning period. As in the previous cases this solution is better than that of the base scenario DA 

algorithm. However, for the same number of predicted settlements for grid electrification in the DA 

algorithm, the MOGA-PGE solution is worse than the costs of the DA algorithm.  It confirms the 

finding of Nguyen (2007) that the number of households in a settlement (i.e. population) has a greater 

cost minimising influence on electrification than either of the distance of the settlement to the grid or 

its population density.  

 

5. Conclusion 

This paper considered the relative performance of the two heuristics used by Deichmann et al. (2011), 

(the DA algorithm) and by Parshall et al. (2009), (the PA algorithm), against a Multi-Objective 

Genetic Algorithm (the MOGA-PGE algorithm) in finding the best balance between network 

extension and standalone renewables (solar and wind) in Ghana.   Using detailed GIS data, the three 

algorithms were used to consider the optimal allocation of namely the centralised grid, decentralised 

standalone solar PVs and decentralised standalone wind turbine units to ensure universal 

electrification in Ghana.   

 

The results indicate that for grid only electrification, the PA algorithm generates outcomes which are 

significantly cheaper than the DA algorithm. However it does have to be noted that the DA algorithm 

is more robust and addresses some sub problems of electrification such as HV transmission extensions 

and equipment siting. Relative to the heuristic algorithms the GA approach suggests solutions which 

imply significantly less grid and significantly more use of stand-alone options.   The implied costs 

associated with the GA approach were found to be lower than those associated with the DA algorithm 

although the nature of the relative costs depended on the Pareto selection criteria used.   
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