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Abstract- In this paper, we investigate the convergence 

pattern of spot prices for the Central West Europe (CWE) 

market. We model the price series of PNX, EEX, BLX, and APX 
using the mean-reverting jump-diffusion geometric Brownian 
motion. Then we study the evolution of the parameters of this 

model applied to the price series of PNX, EEX, BLX, and APX 
in the context of CWE coupling policy. Based on our statistical 
analysis the convergence among the four markets is clear, but 

subject to shocks and it is not constant. Through our analysis we 
do not observe significant impacts of the recent events such as 
Fukushima on the convergence pattern but we can distinguish 

steps of convergence.  

Index Terms—Market coupling, Jump-diffusion Mean-reverting 
Geometric Brownian motion 

I. INTRODUCTION 

EREGULATION of the electricity markets has been 

implemented all over Europe in the past decade. The 

creation of regional market couplings integrating these 

different designs of electricity markets, is the next step 

toward a single and unified European market. The biggest 

coupling created so far is the recently extended TLC (Tri 

Lateral Coupling) that includes the French, German-Austrian, 

Dutch, and Belgian power markets in the Central West 

Europe, CWE, area, [1]. Such a mechanism is supposed to 

improve the security of supply, to optimize the cross border 

transmissions, and also to improve the markets liquidity. 

Market coupling should also result in lower price differences 

between the involved countries and even identical day-ahead 

prices.  

Obviously, electricity is not a common commodity; the 

storage impossibility implies a very unclear relationship 

between spot and futures prices. Moreover, estimating long 

term prices by considering current spot prices is a rather 

complicated, if not unrealistic task, especially when one 

observes the growing share of renewable and consequently 

unpredictable production portfolios. As a result, short and 

long term market must be considered as two separate markets. 

The first one being mostly influenced by momentary 

variations of numerous variables such as temperature, plants 

production availability, demand, while the second one reflects 

actors’ visions of tomorrow’s market considering possible 

evolutions of energy mix, geopolitical changes, network 

improvements, behaviour of related commodities. In that 

context, it seems interesting to study the evolution of the spot 

price convergence in order to assess the market integration. 

This paper aims at analysing the convergence phenomenon 

using the spot price historical data in the CWE market. We 

study the evolution pattern of the spot prices of the CWE 

market through time. This question concerns market players 

in order to implement hedging strategies. Steady relations 

between the CWE spot prices and stable convergence process 

allows for international hedging approaches while unstable 

situations can lead to local hedging strategies. It will highlight 

the trends that were observed before and after the coupling 

for spot prices in France, Germany, Belgium and Netherlands 

in the context of massive changes in energy policies and 

significant integration of renewable energy production units.  

In this paper, we use the dynamic mean-reverting jump-

diffusion parameters estimation approach to analysis the 

convergence phenomenon for the spot prices in the CWE 

market. In our approach we first model the CWE prices of the 

APX, EEX, PNX, BLX markets as the mean-reverting jump-

diffusion geometric Brownian motion. Then we estimate the 

parameters of price models over the time. These parameters 

have important information regarding the behaviour of the 

spot prices in four coupled markets, APX, EEX, PNX, and 

BLX. The results of our analysis are plotted and discussed. 

This paper is organised in four sections, Section I is the 

introduction. The mean-reverting jump-diffusion parameters 

estimation methodology is explained in section II. Section III 

applies the mean-reverting jump-diffusion parameters 

estimation methodology to the spot prices in four coupled 

markets, APX, EEX, PNX, and BLX. The results are 

discussed and compared. Section IV concludes the paper.  

 

II. MEAN REVERTING JUMP DIFFUSION PARAMETERS 

ESTIMATION APPROACH 

Modelling electricity spot prices is not an easy task. 

Electricity price formation is driven by supply and demand 

equilibrium. Inelastic demand implies the occurrence of 

spikes in periods of tight supply-demand balance or extreme 

temperatures. In addition, as most of the commodities, 

electricity prices tend to return to a long term mean level due 

to the demand and supply characteristics. The selected model 

for price must be able to catch these stylized features (mean 

reversion and jumps) in order to describe the price dynamics 

as accurately as possible.  

A geometric Brownian motion is a continuous-time stochastic 

process in which the logarithm of the randomly varying 

quantity follows a Brownian motion, [2], [3]. A stochastic 
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process  is said to follow the geometric Brownian motion if 

it satisfies the following stochastic differential equation:  

t t t tdS S dt S dW                                                           (1) 

Where   and   are the drift and the volatility and 
tW  is a 

standard Brownian motion. 

The solution of the stochastic differential equation in (1), 

given the initial value 
0S , is thus: 

2( /2)

0
tt W

tS S e
   

                                                              (2) 

The geometric Brownian motion is not adapted to the mean 

reversion features of energy commodities. Such a feature can 

be modelled by a mean reverting process such as: 

( )t t tdS S dt dW                                                       (3) 

Where  ,   and   are the strength of the mean reversion, 

the long-term mean level, and the volatility, respectively. The 

drift term (the first term on the right-hand side of equation 

(3)) includes the mean regression. When prices are above the 

long term mean level, they will tend to move downward, and 

the other way round.  

The pure geometric Brownian motion does not model the 

jumps or spikes that might occur in a stochastic process such 

as price. A way to integrate these sudden jumps is to add a 

Poisson process into classical Brownian motion.  

( , ) ( , )dS a S t dt b S t dW dq                                           (4) 

q  is a Poisson process defined by 0dq   with probability   

and 1dq   with probability 1  .   is the size of the jump 

which can be a stochastic variable. The jump part can be 

represented by other processes but the Poisson process is the 

most frequent and probably the most intuitive. 

After a spike, electricity prices usually tend to return to a 

“normal regime” and to revert to their long-term mean-value. 

Thus, it is logical to combine jump diffusion and mean 

reverting models into one model, [4], [5]. The mean-reverting 

jump-diffusion model is represented by the following 

stochastic differential equations: 

( )t t t t tdS S dt dW J dP                                            (5) 

With 
tJ  the jump amplitude and 

tP  a standard Poisson 

process with associated intensity  . In this paper, we employ 

the mean-reversion jump-diffusion geometric Brownian 

motion to model the stochastic prices in the CWE market. 

To investigate the convergence process of the prices in the 

CWE market, we first model the price as a mean-reverting 

jump-diffusion geometric Brownian motion and then we 

study the evolution of the price model parameters through 

time. To do so, we will use the maximum likelihood 

estimation method when an analytic formulation of the 

probability distribution of the model is known. For a 

probability distribution D , the associated density function f  

and the unknown distribution parameter  , the likelihood 

function for a set of data from the observations  
1

N

t t
S


 is 

defined by:   1 21
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
 . The 

likelihood function can actually be considered to have the 

joint density function where the observed values  
1

N

t t
S


 are 

fixed and   is variable. Therefore, finding the best estimate 

for   is equivalent to maximising the likelihood function. 

We use the log-likelihood function in our study. The best 

estimate is: 

1

1

ˆ arg max(ln( ({ } , )) arg max( ln( ( )))
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In order to obtain an analytical form of the characteristic 

function for an affine jump diffusion model leading to an 

analytical expression for the likelihood function, we convert 

the continuous formulation of the model into a discrete one 

by simply approximating dt  by t , [6], [7], [8], and [9]. We 

assume that during a small interval t  the probability that 

two or more jumps are occurring is negligible. The 

probability that one jump is occurring is t  and the 

probability that there is no jump is 1 t  . The jumps are 

described by a Bernoulli model in the interval t . The jump 

amplitude is considered to follow a normal distribution with 

mean 
J   and variance  . This considerably simplifies the 

problem since we can now write the model as a Gaussian 

mixture. By approximating the continuous model with a 

discrete one on a small interval t , we obtain the density 

function as the product of two Gaussian density functions 

with and without a jump, weighted by the jump probability: 

1 ( ) ( )( | ) (1 )
Jt t S S t S S tg S S t f t f                      

With ( ) JS S tf         and 
( )S S tf     

 being the density 

probability functions of ( ) JS S t        and 

( )S S t     . The log likelihood function is then: 
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Therefore estimating the parameters is equivalent to 

maximizing the likelihood function.  

A preliminary estimation for jump part is performed as 

followed: 

1

1

( )t

t t t

t

S
R Ln S S

S




     

We count the number of jumps on the sample length. We 

consider that a jump occur if the value is higher than three 

times of standard deviations.  

III. APPLICATION TO THE CWE MARKET (PNX, EEX, 
BLX, AND APX PRICE SERIES) 

Since it is not easy to estimate mean-reverting jump-diffusion 

geometric Brownian motion with time dependant parameters, 

we estimate the evolution of these parameters for four price 

series. Here the notion of convergence is perceived as the 

convergence of the model parameters. This analysis will be 

done in several steps. First we will estimate, for each price 

series, the dynamics of the five parameters of mean-reverting 

jump-diffusion geometric Brownian motion. For a price 



series,  
1

N

t t
S


 modelled by (5), we implement the maximum 

likelihood estimation method described above on an interval 

[k,k+I] with I being the fixed interval length, and k moving 

from 0 to N-I.  

We can now proceed to the dynamic estimation of the 

parameters. We estimate the parameters for the jump-

diffusion mean-reverting geometric Brownian motion 

described in (5). These parameters are: (1)   : mean 

reversion rate, (2)   : mean reversion level, (3)   : 

stochastic diffusion volatility, (4)  : jump intensity, (5) 
J  : 

mean jump amplitude, (6) 
J  : jump volatility. We use the 

MATLAB function MRJD_SIM implemented in [9] to derive 

these parameters for four price series of PNX, EEX, BLX, 

and APX in CWE market. 

The interval length of the estimation is chosen to be I=250  as 

it corresponds approximately to working days of one year. 

Since we have 1250 days (5 years), k=1000 and this is 

equivalent to 1000 estimations for the parameters from the 

interval I0 =[1,250] up to I5 =[1000,1250]. The evolution of 

the parameters of the mean reverting jump diffusion 

geometric Brownian motion model for price series of PNX, 

EEX, BLX, and APX are illustrated in Fig. 1, Fig. 2, Fig. 3, 

and Fig. 4, respectively. 

Apart from some small disturbances, the four price series 

show the same dynamics for each parameter. We can notice 

that there is a big discontinuity for the mean reversion rate, 

the volatility and the mean jump amplitude of PNX around 

k=500 which correspond to the exceptionally high price level 

reached in 2009 on the French power exchange. 

We also observe that the volatility, the jump intensity, and 

standard jump deviation seem to decrease through the time 

for each market which could be a sign of better integration. It 

is however harder to find a common pattern for the mean 

jump amplitude which is the parameter that reflects the erratic 

behaviour of prices. 

The shape of the mean reversion levels are very similar from  

k = 0 to k = 250, they are increasing, which is logical because 

it corresponds to the rise observed in energy prices between 

2006 and 2008.  

Then they decrease and reach their lowest level for k = 500, 

which corresponds to the end of 2008 and the beginning of 

2009 so that these parameters are estimated for the year 2009, 

when the economic crisis happened. 

To compare these parameters, the evolution of the difference 

of these parameters are calculated and plotted. First we 

compute the difference between the PNX and EEX 

parameters of the mean-reverting jump-diffusion geometric 

Brownian motion model. This is illustrated in Fig. 5. 

 

 
Fig. 1 Evolution of parameters of the mean reverting jump diffusion 

geometric Brownian motion model for PNX price series 

 

 
Fig. 2 Evolution of parameters of the mean reverting jump diffusion 

geometric Brownian motion model for EEX price series 

 

 
Fig. 3 Evolution of parameters of the mean reverting jump diffusion 

geometric Brownian motion model for BLX price series 



 

 
Fig. 4 Evolution of parameters of the mean reverting jump diffusion 

geometric Brownian motion model for APX price series 

 

The most relevant parameter in our study is the mean 

reversion level because it symbolises the spot electricity price 

during normal condition by taking apart the stochastic shocks 

of supply and demand that are included in the jump 

parameters. 

We observe that this difference is globally decreasing and 

converging toward zero, as highlighted by the red line which 

is a quadratic fitting. The EEX and PNX are converging 

toward common mean reversion levels. However, when 

looking closer at the curve we notice that such convergence is 

“stepwise”. These different steps are indicated in Fig. 6. For 

the other parameters, it is harder to perceive a clear pattern 

but we observe that their differences, apart from the mean 

reversion rate, generally tend to stabilize around 0 which is 

obviously a sign of convergence (given we neglect the sudden 

but temporary increase in the mean reversion rate, jump 

amplitude and volatility due to the price spike of PNX in 

2009). 

 
Fig. 5 Difference of parameters between PNX and EEX 

 

In order to assess the convergence process for the four price 

series simultaneously, the maximum difference of the 

parameters is plotted in Fig. 7. 

From this point of view, it is rather clear that the four 

markets are converging since, for most of the parameters, the 

maximum difference is heading towards zero. The standard 

deviation of jumps and to some extent the volatility also 

seems to converge. For three remaining parameters, it is less 

clear because: either they are impacted by the big price spikes 

that disturb estimation (especially the mean reversion rate for 

k around 500, 750 and 900), or they represent the jump part. 

These jumps can occur in one country independently from the 

others. 

The statistical analysis shows the convergence among the 

four markets, but convergence is subject to shocks and it is 

not constant. Through this method we do not observe 

significant impacts of the recent events such as Fukushima 

but we can distinguish steps of convergence. 

Finally, using our model, we simulate the spot prices for the 

next 250 days to the end of August 2012. We compute 10000 

simulations of PNX, EEX, APX and BLX with the last 

historical data and used them as starting points. We calculate 

for each four markets, 10000 simulations of prices between 

7
th

 September 2011 and 22
nd

 August 2012 (corresponding to 

250 week days). 

 

 
Fig. 6 Difference between mean reversion levels of PNX and EEX 

 



 
Fig. 7 Maximum difference between each parameter of the Mean Reverting Jump Diffusion geometric Brownian motion model  

 

The estimations for the mean values of prices are collected in 

Table I. 
 

TABLE I 

MEAN VALUES FOR PRICES ESTIMATED THROUGH SIMULATION (PERIOD FROM 

7TH
 SEPTEMBER 2011 TO 22ND

 AUGUST 2012 ) 

APX 54,88 €/MWh 

EEX 54,4 €/MWh 

PNX 53,81 €/MWh 

BLX 54,42 €/MWh 

 

As we can see the mean value of PNX remains below mean 

values of APX, EEX, and BLX as observed recently. The 

maximum difference is equal to 1.07€/MWh and the 

difference between EEX and PNX is equal to 0.59€/MWh.  

IV. CONCLUSION 

This study was dedicated to explore the convergence process  

for the Central West Europe (CWE) market. We use the 

Mean-Reverting Jump-Diffusion model and estimated its 

related parameters (mean reversion level, mean reversion 

rate, volatility, jump intensity, jump amplitude, jump 

volatility) on a constant length interval along the historical 

price series. Prices clearly show signs of convergence 

especially through the mean reversion level. Computing the 

maximum and minimum differences between each parameter, 

we observed that the difference in mean reversion levels is 

decreasing, while standard deviation and jump diffusion are 

converging. It was however harder to observe significant 

moves in the other parameters. 

The analysis shows that there is convergence among the 

CWE countries. The relation between prices is getting 

steadier. The dynamics of the convergence process is 

stepwise: jumping from one convergence state to another 

although impacts of external events are not clearly identified 

in our analysis. 

However, more detailed studies are needed to explore the 

exact pattern of convergence in the CWE market. 
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