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Overview 
The literature on energy use and pollution emissions decomposition recently identified the 
logarithmic mean Divisia index (LMDI) approach as one of the most favorable (Ang 2004; 
Ang and Liu 2001, 2007a and 2007b). This is based mainly on four features of the method, 
namely its ability to handle zero and negative values, the absence of any residual term and 
the ease of calculation. In addition, it is invariant under time and factor reversal and fulfills 
aggregate consistency and proportionality. 
 
I show how the problems with zero and negative values in decomposition can be 
understood by reference to some ill-defined mathematical operations and integral 
approximation. Referring to integral approximation, which is the basis of any 
decomposition analysis, I also discuss the residual in decomposition and show that the 
presence of a non-zero residual is natural and that requiring a zero residual as a strategy to 
identify optimal decomposition methods is without basis. I illustrate these findings with the 
LMDI, simulations allowing for comparison of the LMDI results to the values based on 
exact solution of the integrals involved, and application of the LMDI and other methods to 
several data sets (CO2 and SO2 in Sweden, CO2 in Korea). 
 
Methods 
I develop an analytically consistent formalism of decomposition techniques that is based on 
integral approximation and that avoids ill-defined mathematical operations such as division 
by zero.  
 
This shows, that several of the motivations mentioned above to identify optimal 
decomposition methods actually have no basis as guidelines for the quality of a 
decomposition approach. The zero and negative value problems of decomposition analysis 
stem from ill-defined operations during the calculation of the indices (Muller 2006). These 
operations are the expansion of quotients, i.e. the multiplication with x/x, where x stands for 
some variable of interest, and subsequent application of derivation with respect to time or 
taking logarithms. In case of x < 0, this can lead to problems of division by zero or taking 
logarithms of zero or negative values. These problems can be avoided by avoiding ill-
defined mathematical operations during the calculation of the various parts of the indices. 
 
The residual, on the other hand, reflects the fact that any such decomposition is based on 
integral approximation (Trivedi 1981). The residual cannot be argued to necessarily be zero 
for an optimal decomposition approach. The reason being that a zero residual stemming 
from a truly correct approximation of the integrals involved is highly unlikely. A zero 
residual reflects no error in approximation, which means that largely unknown functions 
with information available only on their values for some discrete points (such as once a 
year) have been guessed correctly for any point of time. A zero residual can thus reasonably 
only stem from some assignment of the residual from the approximation to the various parts 



of the decomposition. Such an assignment is arbitrary unless further information on the 
underlying functions is available. Forcing the residual to be zero could in principle also 
involve mutually canceling terms of opposite sign in different parts of the decomposition. 
This could make the zero-residual decomposition even less  exact than a decomposition 
with some non-zero residual term based on a good approximation. 
 
I illustrate these claims on a formal level first, referring to the LMDI as an example. I then 
do some simple simulation, where the effect of the different underlying integral and 
derivative approximation readily can be assessed and compared to the values from exact 
calculations of the integral. Some application to real data provides further illustration. 
 
 
Results 
Most decomposition methods currently used are based on the choice of weights for the 
boundary values of the intervals for which integrals have to be approximated. Laspeyres- 
and Paasche-Index based methods, for example, approximate by employing step-functions 
given by the right- or left-hand values. The Divisia-Index with α = ½ gives equal weights to 
each boundary value and thus approximates the unknown function by joining the known 
boundary points by a straight line. Only if more information on the underlying functions is 
available, some judgment if they are better captured by a step function or the straight line or 
some other type of approximation might be possible, thus suggesting a most adequate 
decomposition method or choice of weights, respectively. 
 
On this background, the LMDI has no theoretical support and the Divisia Index with α = ½ 
may be a transparent, simple and easy to calculate alternative. With this method, the 
residual term, although usually not zero, has not been excessively large for the cases I have 
calculated. For these examples, the several terms of the decomposition using the Divisia 
index with α = ½ were almost identical to the results from the LMDI. In the simulations, 
however, the LMDI performed better for larger time intervals and the results suggest that 
the potential good performance of the Divisia-Index might depend on the availability of 
relatively short time-intervals (i.e. short enough that the functions do not change much over 
the range of the interval).  
 
Conclusions 
Reference to integral approximation, which is the basis of any decomposition method, and 
to well-defined mathematical operations only (such as avoiding division by zero), helps to 
clarify the residual and problems with zero and negative values in decomposition analysis. 
This could help to identify improved, transparent and reliable decomposition methods. The 
Divisia method with α = ½  performs quite well and is transparent. The LMDI also 
performs well and sometimes even better (e.g. in some simulations, where the exact 
decomposition solution is known), but its adequacy still has to be understood, as it is not 
based on integral approximation. The optimal method should be chosen in relation to the 
data available. Increased information on this data and on how variables might develop 
between the discrete points available (e.g. deriving some limits on how fast it can change) 
could improve this choice. 
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