
   
 

Overview 
Technology-rich, optimization-based electricity system models are commonly used to generate electricity 

projections for policy support, especially at a national level [1]. Looking retrospectively, while there are good 
reasons why modelled projections are consistently different from historical transitions [2–4], there are many 
examples where these projections were systematically overconfident and underestimated future uncertainties [4]. 
Novel probabilistic uncertainty forecasting methods have been pioneered for the case of the US energy projections 
[5], but it remains unclear to what extent these methods can be applied to other countries and can be integrated in 
energy system models rather than applied post-hoc on the past projections. In this study, using a cost-optimization 
modeling framework D-EXPANSE for the electricity sectors of 31 European countries, we demonstrate and evaluate 
empirical density forecasting methods in order to find the most suitable method to generate probabilistic projections 
for each model output in national electricity system modeling. 

Methods 
In this study, we conduct probabilistic uncertainty forecasting with empirical prediction intervals for electricity 

sector transitions in 31 European countries, using a cost-optimization modeling framework D-EXPANSE [2,3]. 
First, we use D-EXPANSE to retrospectively model national electricity sectors in 31 European countries over the 
1990 – 2019 period. D-EXPANSE is a national-level model with a bottom-up, perfect foresight, and cost-
optimization structure. By comparing the modeled cost-optimal pathway and the historical pathway in the real 
world, we quantify the empirical projection errors of different types.  

Second, we build out-of-sample probabilistic density forecasting model [5]. Different empirical density 
forecasting methods are implemented to obtain the prediction intervals, considering various error types and error 
distribution assumptions. The error types include mean error (ME), mean logarithmic error (MLE), symmetric mean 
percentage error (sMPE). The error distribution assumptions include non-parametric distribution [6], parametric 
(Gaussian) distribution, and Chebyshev inequality-based distribution.  

Third, we evaluate various probabilistic density forecasting methods for each model output and use the best one 
to obtain the future uncertainty forecasting results. We evaluate the performance of the uncertainty density 
forecasting model in multiple countries, using the weighted interval score (WIS) [7]. Once identifying the best 
probabilistic density forecast method for each model output, we apply these methods for estimating uncertainties 
around each modelled projection for the future until 2050. 

Results 
With D-EXPANSE retrospective modeling of electricity system transitions in each country, the different model 

projections are generated under each model run with different starting years. The results show that the projection 
errors and their standard deviation at each horizon differ in projection horizon from 1 to 20. Also, the projection 
errors behave differently regarding the values and their distribution. The performances of different density 
forecasting methods are evaluated with the calculation of weighted interval scores (WIS). Overall, the Chebyshev’s 
inequality-based ME has the most accurate empirical prediction interval forecast with the narrowest WIS variation 
bounds and a relatively high normalized WIS value for multiple renewable technologies, such as the installed 
capacity and annual generation of solar PV, onshore wind, offshore wind, hydro dam, hydro run-of-river, biomass 
and biogas. However, for the fossil fuel-based technologies and nuclear power plants, many other methods 
outperform Chebyshev’s inequality-based ME.  

Finally, using the best probabilistic density forecasting method for each model output, we estimate the 
uncertainties around each modelled projection for the future. For example, for onshore wind power generation (Fig. 
1), we use Chebyshev’s inequality-based ME method to estimate the uncertainty around the model projection until 
2050. The results show that in different countries, the projections are different in terms of both the modeled 
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projection and the probabilistic density intervals for onshore wind power generation. The increasing trend is less 
drastic in Italy, Germany and France compared to Austria, while the uncertainty interval is much broader.  

 

Fig. 1 Probabilistic density forecast for onshore wind power generation in Italy, Germany, France and Austria, using 
Chebyshev’s inequality-based ME method. The black dots indicate the historic data and the dotted line is the model 
projection. The shaded area indicates the probabilistic density of 50%, 65%, 89% and 95%. 

Conclusions 
In this study, we present an uncertainty forecasting approach with empirical prediction intervals using 

retrospective modeling exercise with D-EXPANSE model for national electricity sectors in 31 European countries 
over the 1990–2019 period. We develop multiple empirical density forecasting methods with different projection 
errors and error distributions, using retrospective modeling for the out-of-sample accuracy testing of these model 
output projections. The results show that for each model output, there may be different preferred empirical density 
forecasting methods that should be chosen to obtain the most accurate uncertainty interval forecasts. In this way, we 
gather first-of-the-kind evidence to inform how and to what extent the probabilistic uncertainty projections can be 
applied for forward-looking analysis in bottom-up models. 
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