
   

Overview 

Offshore wind has been pursued with great effort to increase the proportion of renewables in the energy mix and to 

meet increasing consumption demands. A substantial amount of research has been conducted to improve operational 

performance and to reduce cost. Net present value (NPV) and levelized cost of energy (LCoE) are frequently used to 

assess profitability. In both approaches, lifetime electricity production and production time profile are important 

drivers of profitability (Osmundsen et al., 2021.; Aldersey-Williams, et al., 2019). Production (MWh) is a product of 

three factors: capacity (MW), timespan (hours) and capacity factor. Capacity factor is defined as the ratio of between 

actual electricity output and the maximum possible output. There is scant analytical research on the realized capacity 

factor of offshore wind farms. 

 

The aim of this paper is to augment the literature by applying econometric methods to analyse data from 36 offshore 

wind farms in UK commissioned between 2004 and 2020. There are two key objectives of our paper. First, we examine 

how capacity factors are affected by wind farm characteristics. Second, we assess how capacity factors evolve 

throughout the wind farms’ lifespan. A wind farm’s capacity factor depends chiefly on two variables: wind resources 

and the wind turbine’s ability to capture the kinetic energy of the wind. For wind resources, we use the monthly 

average wind speed of UK as proxy for wind power in each region. The local wind conditions can be proxied by the 

location of the wind farm. We create dummy variable of the location of the 36 wind farms and divide them into six 

groups according to their clustered location. For the turbine’s ability to capture wind power, it depends on the 

technology development and the state and the condition of the wind turbines. Turbine capacity captures improvements 

in turbine technology. Wear and tear accumulate as the wind turbines age. Consequently, age is expected to have a 

negative impact on capacity factor. To address the possibility of nonlinearity, we include both age and age squared as 

independent variables.  

Methods 

Our econometric approach involves running random effect panel data regression with the logarithm of monthly, 

realized capacity factor and the proposed explanatory variables. Production data was extracted from the UK Office of 

Gas and Electricity Markets (OFGEM) Renewables and CHP register database. Monthly capacity factor is defined in  

Equation (1). 
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Based on our ex-ante expectations and the extant literature (Hughes, G., 2012; Aldersey-Williams, et al., 2020), our 

regression equation is specified as follows: 

 
 ln 𝐶𝐹𝑖𝑡 =  𝛽0 + 𝛽1𝐴𝑔𝑒𝑖𝑡 + 𝛽2𝐴𝑔𝑒𝑖𝑡

2 + 𝛽3𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑𝑡 + 𝛽4𝑈𝑛𝑖𝑡𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 +
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+ 𝛽10𝐷𝑊𝑖𝑛𝑡𝑒𝑟𝑖𝑡 + 𝛽11𝐷𝑆𝑢𝑚𝑚𝑒𝑟𝑖𝑡 + 𝛽12𝐷𝐴𝑢𝑡𝑢𝑚𝑛𝑖𝑡   + 𝜀𝑖𝑡

 (2) 

 

where 𝐶𝐹𝑖𝑡 is the capacity factor of wind farm 𝑖 at month 𝑡 into its lifespan and we use the logarithm term in the model, 

𝐴𝑔𝑒𝑖𝑡 is the number of months of wind farm 𝑖 at month 𝑡 into its lifespan, 𝐴𝑔𝑒𝑖𝑡
2  is the squared term of age, 𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑𝑡 

is the average wind speed at month 𝑡 of twelve regional weather stations in UK, 𝑈𝑛𝑖𝑡𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖  is nominal 

capacity of the unit turbine used by wind farm 𝑖 (for wind farms having turbines with different nominal capacity, the 

average number is used). We divide 36 wind farms into six groups according to their location 𝐷𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗  and create 

five dummy location variables. The remaining three dummy variables 𝐷𝑊𝑖𝑛𝑡𝑒𝑟𝑖𝑡, 𝐷𝑆𝑢𝑚𝑚𝑒𝑟𝑖𝑡, and 𝐷𝐴𝑢𝑡𝑢𝑚𝑛𝑖𝑡 represent 

different seasons, with the Spring season serving as the base group.  

Results 

The regression result shows that the model is overall significant, with R-square 0.55. Conforming to ex ante 

expectations, average UK wind speed and the unit turbine capacity (proxy for technology) have positive and significant 

coefficients. Location dummy variables suggests variation in capacity factor due local geographical differences in 

wind condition. Capacity factor of Autumn and Winter are on average significantly higher than Spring, while Summer 

is significantly lower. 
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Table 1. Regression result  

 
 

Description statistics suggests a nonlinear relationship between the capacity factor and the progress into lifespan. For 

illustrative purpose, we showcase the temporal development of Barrow offshore wind farm in Figure 1. As observed, 

there is an inverted U-chape between capacity factor and age. Regression results support the notion of a reverse U-

shaped relationship. Age squared has a negative estimated beta coefficient, significant at 10% level, and age is positive 

and significant at 5% level. This results in an asymmetric inverted U-shape. Capacity factor will initially increase, 

reach a top, and then begin to decay until the end of the wind farm's lifespan. The turning point occurs at 104.9 months 

(about 8.7 years). It means that holding other factors constant, the capacity factor would increase with age until 8.7 

years, and then the additional year of operating would decrease the capacity factor. We use mean value of the wind 

speed and unit turbine capacity of the dataset and calculate the predicted capacity factor according to our estimation 

model. As shown in Figure 2, the capacity factor is expected to decrease by 5.68 percentage points from beginning to 

the end of the wind farm’s lifetime (25 years). From the peak to the end, the decrease is 8.22 percentage points. 

 

Figure 1. Capacity factor of Barrow offshore wind 

farm 

Figure 2. Age-related change in capacity factor 

throughout lifespan 

 

 

 

In Figure 1, the black, solid line with dots represents the 

actual, realized capacity factor of Barrow offshore wind 

farm. The horizontal blue and dashed line denotes the wind 

farm’s average capacity factor based on currently available 

data. The red, solid line represents the smoothed, moving 

average of the capacity factor.  

In Figure 2, the blue line is an example of the percentage point 

changes in capacity factor as the age of wind farm increases. 

Conclusions 

Using the realized electricity production data in UK, our analysis elucidates important aspects of capacity factor 

development for offshore wind farms. Based on our analysis, we find that the performance of offshore wind farms is 

significantly correlated with technology development and local wind conditions. We also find a non-linear relationship 

between capacity factor and age, providing important information for investors and analysts. Declining capacity 

factors obviously impact optimal project duration and possibly project profitability calculations.  
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