
   
 

Abstract 
 

In an international context of low carbon energy transition, many countries have started deploying renewable power 

generation which has placed interest in the development of energy storage to harvest residual load. Argentina has 

recently set a 20% renewable electric energy consumption target by December 31th 2025. This study aims to 

estimate whether Argentina will produce residual load by 2026 assuming full deployment of renewable energy for 

three different demand scenarios. An energy demand forecasting model for Argentina was developed using a hybrid 

model (similar day method and SARIMA time series) based on historical hourly energy demand data of Argentina 

from 2007-2017, and macroeconimic data. To estimate inflexible generation, bottom-up aggregate generation models 

were developed for wind and solar energy. 2017-2018 inflexible generation data was used to build Monte Carlo 

simulations, regressions and time series models. 2008-2018 hydroelectric power generation data was also included in 

the residual load estimation. This study shows that by 2026 residual load is unlikely to generate surplus energy to be 

stored, at least, at a moderate scale. 

 

Introduction 
 

In an international context of low carbon energy transition set by the 2015 Paris Agreement, many countries have 

started deploying renewable power generation. An early example is the German ‘Energiewende’ which states that 

renewable energy sources have to increase from roughly 10% by 2010 to 60% by 2050 [1]. Since renewable energies 

are intermittent in nature (eg. wind, solar, etc.), this has placed a significant interest in the development of energy 

storage to harvest residual load –surplus generation that exceeds demand- [2].  

In the opposite direction Argentina has early developed energy storage facilities, specifically pumped-hydro power 

plants: Los Reyunos (1983) and Río Grande (1986) that provide a total of 974MW of installed capacity. On the other 

hand, according to Law N⁰26.190 (later modified by N⁰27.191) contribution of renewable energy in Argentina 

should reach 20% national electric energy consumption by December 31th 2025. In order to reach this goal the 

Argentine Government has released RenovAr 1, 1.5 and 2 tenders to install a total capacity of almost 4500 MW and 

is expected to develop further over the next years.  

This work aims to predict whether renewable energy will produce residual load by 2026 and if there will rise a 

business opportunity for Argentina’s sunk energy storage infrastructure to harvest renewable energy generation 

surplus. 

 

Residual Load 

 

As mentioned in the introduction, residual load lets evaluate surplus generation left for energy storage. This section 

discusses the definition of residual load and defines a methodology for estimation.  

According to [3], residual load can be defined as the load "... left after substracting those generators who have to 

produce electricity ('must run') and those that generate with (almost) no marginal costs (variable renewables like 

wind, solar and hydro)". Although this definition sheds some light on what generation should be included in the 

calculation (wind and solar by definition fall into this category), it is not extensive to all types of power generation 

sources and unclear whether all hydroelectric capacity should be included in this calculation. 

In Argentina, renewable projects have priority to dispatch energy (this includes wind, solar, biomass, biogas, mini-

hydro projects) and are intrinsically inflexible. Also, nuclear energy can be considered ‘must run’ given that, by 

default, it operates at maximum capacity given its almost zero marginal cost.  

Run-of-river hydroelectric generation are most of the time inflexible given that these projects usually have little or no 

energy storage. Impoundment hydropower plants, however, should only be considered if these are restricted to store 

energy (eg. restricted by operations). This topic will be later discussed.  
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Taking the aspects discussed above into consideration, equation (I) provides a clear definition on how to estimate 

residual load at a given hour (h): 

 

                         (I) 

 

where RL stands for residual load, TL is the total system load, BM+BG stands for biomass and bio gas, RoR=Run-

of-the-River, I-Inf=Inflexible Impoundment. If RL=0, inflexible generation meets demand. On the other hand, if 

RL<0 generation exceeds demand which could be potentially used for energy storage.   

The next sections will provide, then, an estimation on demand and generation by 2026 discussing how to calculate all 

these terms.  

Energy Demand Modelling 

 

Database 

 

The data used to forecast the aggregated demand was a 2007-2018 hourly demand data of the SADI (Sistema 

Argentino de Interconexión) which is Argentina’s main electricity transmission network. Although information of 

previous years was also available, SADI integration to the Patagonia tranmission Subnetwork SIP (Sistema 

Interconectado Patagónico) occurred in March 2006. 

This study also assumes for the 2026 forecast that the integration of other interconnections -eg. Sistema Fueguino de 

Subtransmisión which could mean an increase in demand of about ~100MW- is unlikely to occur in the following 

years given that the SADI Sur has already committed its transmission capacity. Penetration of electric vehicle 

technologies were also disregarded for this study.  

 

Electricity Load Model Building 

 

The model choose to forecast electricity demand is based on the approach described by Berk [4]. Let Ct be the 

electricity load of the SADI interconnection at time t, we describe the load by the following equation: 

 

                                                                 (II) 

 

where Dt denotes a deterministic load forecast,  a function of the residual grid load and Rt the residual time 

series. Logarithm was applied to the electricity load to reduce skewness. It is important to outline that the 

deterministic load model must include trend –i.e predictors of long-term economic development- and seasonal effects 

–eg. season, monthly, weekly, etc.- as proposed in [5,6]. The following sections will give a detailed explanations of 

all model components.  

 

Data Cleansing & Outlier Cleaning 

 

First, data cleansing was performed to detect corrupt data (eg. zero values) using a hampel filter with 120-hr and 5 

times the standard deviation (replacing the mean for the median for robustness). Points were checked before removal 

and replaced using average of neighboring values.  

Before training the deterministic load forecast model, outliers were removed from the electricity load database using 

a hampel filter. The same procedure as described above was chosen with 120-hr and  3 times the standard deviation. 

Nevertheless, it is important to outline that the original (cleaned) dataset was used later to compute and analyze 

residual loads.    

Deterministic Demand Forecast Modelling 

 

The deterministic load forecast was modelled applying a similar-day method to the historical data set. Other 

variables such as population, GDP and Wholesale electricity prices were included to model economic cyclic and 

long term trends. Based on this approach, a set of explanatory variables (Table I) was developed to explain trend and 

seasonal changes in the aggregated electricity load (response variable). All variables were normalized to avoid 

distortion differences. 

 

 

 

 



   

ϑ1: Monday 

ϑ2: Tuesday 

ϑ3: Thursday 

ϑ4: Friday 

ϑ5: Saturday 

ϑ6: Sunday 

ϑ7: January 1st 

ϑ8: January 2nd 

ϑ9: December 25th 

ϑ10: December 31st Eve (12-24hs) 

 

ϑ11: December 24th Eve (12-24hs) 

ϑ12-22: Month i (i=12=January, i=13=February, 

i=14=April...,i=22=December) 

ϑ23:  Public Holiday/Bridge Day 

ϑ24: Winter Holiday Period 

ϑ25-27: Season i (i=25=Summer, i=26=Winter, 

i=27=Spring) 

ϑ28: Population (daily linearized from INDEC census) 

ϑ29: GDP (USD, quarterly, deseasonalized) 

ϑ30: Wholesale Electricity Price for Large Users 

(USD,monthly) 

Table I. Overview of variables for deterministic load forecasting.                                                                                          

ϑ1-27 corresponds to binary variables. ϑ28-30 are continuous variables. 

 

It is important to outline that ϑ29 corresponds to the wholesale electricity price for large users instead of the average 

wholesale electricity price. This was considered as being more representative given the discriminatory nature of the 

wholesale electricity market that still prevails in Argentina, where the gap between industrial and residential price is 

significant.  

A separate deterministic forecast for each hour was preferred over taking the time series as a whole set given initial 

assessment comparing linear regressions gave significant lower errors. 

Next, the performance of different machine learning algorithms (multiple linear regression, robust regression, 

regression trees and LSBoost/Bag ensemble learning) was studied in order to select the most adequate model. For 

this purpose the dataset was divided in training test (2007-2016 historical data) and test set (2017 historical date).  

Parameter tuning for the regression tree was conducted using cross validation over the training set. Regression 

Ensemble optimization was optimized using Matlab automatic hyperparamter optimization that minimizes five-fold 

cross-validation. Robust Regression optimization was conducted choosing amongst different weight functions 

(‘Andrews’, ‘Bisquare’ and ‘Cauchy’) and tuning the weight constant. Mean squared error (MSE) was chosen as the 

error estimator for conducting these analysis. The results are summarized in Figure I. 

 

 
Figure I. MSE value comparison (colorscale) for each algorithm (1=Linear Regression, 2=Robust Regression, 

3=Regression Trees, 4= Regression Ensemble) vs hourly data (N=24). 

 

From the results shown, it can be concluded that Linear and Robust Regression had similar performance throughout 

each hour. Regression Trees and Regression Ensemble, on the other hand, had variable performance. Based on this 

analysis, it was decided to use Robust Regression to build our model.   

Table II summarizes the results from fitting robust regression model for each hour. In general terms, curve 

adjustment gives good results (R2 ranges from 0.83 to 0.92) and RMSE values are moderate as well (from 4.44E-02 to 

6.11E-02). Figure III shows an example of how the deterministic model fits the hourly data used for the regression.  

  



Hour R2 Adjusted RMSE Hour R2 Adjusted RMSE 

0 0.84 5.39E-02 12 0.89 5.22E-02 

1 0.95 3.13E-02 13 0.88 5.61E-02 

2 0.85 5.26E-02 14 0.88 5.81E-02 

3 0.84 5.18E-02 15 0.88 5.92E-02 

4 0.85 4.95E-02 16 0.87 6.10E-02 

5 0.84 4.81E-02 17 0.86 6.11E-02 

6 0.85 5.00E-02 18 0.84 5.92E-02 

7 0.9 4.89E-02 19 0.83 5.40E-02 

8 0.92 4.89E-02 20 0.83 4.69E-02 

9 0.92 4.93E-02 21 0.84 4.44E-02 

10 0.91 4.89E-02 22 0.83 4.83E-02 

11 0.9 5.01E-02 23 0.83 5.32E-02 

 

Table II. Summary of Robust fit results for each hour regression (N=24) 

 

 
Figure II. Robust Fit vs. Hourly Data (Regression Data, random sample) 

 

Residual Demand Forecast Modelling 

 

The residual demand results from substracting the determinsitic demand to the original (cleaned) dataset. Figure III 

shows the residual load that will be modelled using time series.  

 
Figure III. Residual Load Time Series. 

 

A Dickey and Fuller test was performed to check for stationarity. The test indicated that the hypothesis is TRUE so 

we can reject the unit root hypothesis with a significance level of pvalue=10-3. Therefore, we can assume that the 

residual grid demand is stationary.   
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Next, the sample partial autocorrelation function was obtained to study potential time series models (see Figure IV). 

This graphs show a strong autocorrelation with the 1st lag and a clear 24 hour seasonality. Therefore, a SARIMA (p, 

0, q)×(P, 0,Q)24 model were built in accordance to the mentioned autocorrelation structure.  

 

 
Figure IV. Sample Partial Autocorrelation Function 

  

In order to determine and contrast the performance of the model parameters, the Akaike Information Criterion 

(AICC) was calculated for each case. The values were calculated for  which gives a total of 

44=256 models. Table III provides a ranking of the models that shown the best performance. 

  

Ranking (#) p q P Q AICC 

1 3 3 3 3 -549804 

2 3 3 3 2 -549801 

3 3 2 3 3 -549790 

4 3 3 1 3 -549789 

5 3 2 2 3 -549787 

Table III. Performance ranking for time series models (p, 0, q)×(P, 0,Q)24 using AICC 

 

Given that the difference between these values is not considerably significant the model with less parameters 

(3,0,2)×(2,0,3)24 was chosen to describe the residual grid load. The model parameters obtained were the following: 

 

 
Figure V. Model parameters for the SARIMA model. 

 

In order to check if the model captured the autocorrelation effects,  the partial autocorrelation function of the time 

series residuals was obtained as shown in Figure VI. This graphs shows that most autocorrelation was removed to a 

significant level (confidence interval  with M=96360 hours).  

 

 

 

 

 

 

 



 

 
Figure VI. Sample Partial Autocorrelation for the time series residuals 

 

 

Last, an analysis of the time series residuals was also conducted to verify the distribution of the model innovations. 

As shown in Figure VII, it can be seen that these follow a t-Student distribution with ν=3.1, which was considered 

for the forecasting.    

 
Figure VII. Time series residuals histogram. The results show a t-student distribution with ν=3.1 

 

2026 Scenario Demand Forecast Modelling 

 

In this section, a brief description of three different scenarios will be provided. This data will serve to build the 

variables for the deterministic regression described in Table I. In particular, variables ϑ1-27  were built taking the 

holiday scheme of 2017 whereas ϑ28-30 requires a more sophisticated analysis.  

Population (ϑ28) was estimated projecting last population census (INDEC 2010) assuming a compound annual grow 

rate of 1.14% which was the growth for the census year. Variables ϑ29-30 (GDP and Wholesale Electricity price) were 

estimated under three different scenarios of Argentina development (Low, Base and High). These are summarized in 

Table IV.     

  

Scenario 
GDP 

Growth 

Wholesale Electricity 

Price for Large Users 

(USD) in 2026 

Low 1.5%/yr. 100 

Base 2.5%/yr. 90 

High 3.5%/yr. 70 

Table IV. Argentina Development Scenarios for 2026 Scenarios 

 

 

 

 

 

 

 



7 

 

Wind Generation Modelling 
 

Wind Generation Data Analysis 
 

The first part of this section aims to study the effects of spatial correlation of wind power generation across 

Argentina. This was conducted using a similar approach as described by Malvaldi [7]. The data gathered for this 

analysis includes the generation data of wind power plants in Argentina for the years 2017-2018.   

The power generation information was carefully filtered (eg. testing periods of wind power were removed, scheduled 

maintenance) and normalized (setting capacity power to 1). Geographic coordinates of the wind power generation 

plants were used to calculate distance between power plants.  

Figure VIII shows correlation coefficients for wind power plants pairs versus the distance using an exponential 

function as described again by Malvaldi: 

                                                                             (III) 

 

where τ is the correlation, d is the distance, and a,b are coefficients. In this study, coefficient a was set to 1 which can 

be interpreted as τ=1 when d=0. Robust fitting was used using Andrews weight. Coefficient points with distance over 

1000km with negative correlation was assumed to be 0 (not statistically significant). The value of the coefficient 

using this approach gives b=-4.8*10-3. This Figure shows a strong correlation for short distances (up to ~0.5 for 

distance around ~150km).  

 

 
Figure VIII. Correlation vs. Distance (in kilometers) plot.                                                                                              

Data was fitted as described in equation (III)   

 

Next, correlograms for each pair of wind power plants were constructed. Figure IX shows two correlograms. Figure 

IXa shows one with a wind park pair at a close distance (adjacent parks) and hence high correlation (τ=0.97) versus 

Figure IXb at a longer distance (d=57km) and lower correlation (τ=0.65).    

 

 
Figure IX. a) Rawson I vs. Rawson II Wind Power Plant Correlogram (τ=0.97) b) Corti vs. La Castellana Wind 

Power Plant Correlogram (τ=0.65). Normalized probability shown in colorscale. Max color scale was set to 0.005 to 

show dispersion.    



 

Aggregated Wind Power Energy Simulation 

 

The second part of this section briefly describes the procedure used to run aggregate wind power simulations. A 

bottom-up approach was selected using the wind power generation data described above and infrastructure metadata 

(coordinates and installed capacity) of the wind park projects that should be operational over the next years (Renovar 

1, 1.5, 2 and MATER).  

 
Figure X. Distribution of Res.202, Renovar 1, 1.5 and 2 wind park projects 

 

Wind power park infrastructure by 2025 was extrapolated assuming installed plus to be operational wind power 

plants will be available by that date. Given that solar capacity by 2026 will exceed the former projects, additional 

power plants were added randomly in the main wind areas following the same distribution as the Renovar and 

MATER projects. 

A Monte Carlo approach was selected to build aggregate wind power generation. The main concept behind this 

approach is to: 1) use 2017-2018 wind power generation information of operational projects as seeds 2) generate 

sample data running Monte Carlo simulations using artificial correlograms built from empirical correlograms 

described in the previous section. A detailed explanation of how artificial correlograms were built are described in 

the next section.     

The pseudo code used for the simulation is the following: 

i) Choose a park (that is not a seed) 

ii) Find closest seed 

iii) Calculate distance using geographic coordinates 

iv) Estimate correlation using equation (III) 

v) Build artificial correlogram 

vi) Run Monte Carlo trials for each hour of the year (8760 trials)                                                                                                                  

using generation data from (ii) and correlogram (v). 

vii) Repeat. If correlation is lower than 0.5 (no close seeds are available),                                                                                                      

then include simulated data from (vi) to run as seeds. 

 

Figure XI shows the result of a simulation using the procedure described in this section.  

 
Figure XI. 6,000MW wind power installed capacity energy simulation for 8760h (1year) 
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Building Correlograms for Monte Carlo Simulation 

 

In this section, a brief explanation of how to build artificial correlograms will be given. The main purpose behind 

this procedure is to be able to build a representative correlogram using only the correlation as the input.    

For a given correlation τ , artificial correlogram C is built using a Gaussian kernel function that uses the empirical 

correlograms described above ( ) associated to their respective correlation coefficients ( : 

                                                                        (IV) 

 

where wi are the weights associated to each of the n empirical correlograms  which are calculated as shown below: 

  

                                                                       (V) 

 

In this equation, β is a decay constant which was set arbitrarily to β=100. It can be seen, for a given β, the closer the 

correlation τ to the empirical correlation , the higher the weight. Figure XII shows an example of an artificial 

correlogram built with this procedure for τ=0.8 

 

 
Figure XII. Artificial correlogram built for τ=0.8. Normalized probability shown in colorscale. Max color scale was 

set to 0.005 to show dispersion. 

  

Solar Energy Modelling 
 

Deterministic Solar Energy Modelling 

  

The approach to generate simulated solar photovoltaic power plant data is based on two components: a deterministic 

component which depends on the performance of the PV systems vs. a stochastic component produced -mainly- by 

cloud shadowing.  

The list of variables that should be considered to model the performance of PV plants is vast: solar radiation (direct 

and diffuse) at a specific power plant, temperature, the technology of the PV modules (eg. Si monocrystalline has a 

better performance than Si polycristalline), array orientation (eg. two-axis tracking gives higher yields than single-

axis though the costs associated to the former are higher), array shading (eg. row to row, objects or horizon shadings 

can reduce energy output) and electrical losses (eg. wire losses, inverter and transformation losses) to mention just a 

few dimensions. On the other hand, strong cloud shadowing models usually account for temporal and spatial 

correlation based on weather data.    

Given that we are interested in long term aggregated solar energy from PV plants and the information described 

above is limited –specially for 2026-, a simplified approach was proposed for modelling. This consists of using a 

similar approach that was used for demand modelling by relating energy output to direct radiation as described next: 

 

                                                                       (VI) 

 



where, in this case, Dt denotes a deterministic solar energy forecast,  a function of the residual solar energy and 

Rt the residual time series. 

  

The procedure to gather information for the model was the following: 

 

1) Build direct solar radiation data based on geographic coordinates. 

2) Plot Energy Output vs. Direct Radiation for a given PV plant 

3) Remove outliers (cloud shadowing) for deterministic modelling  

4) Cluster performance of solar power plants  

5) Fit Deterministic Regression for each cluster 

6) Calculate residuals from deterministic model fitting 

7) Use time series for solar energy residuals (cloud shadowing) 

 

The data gathered for this analysis corresponds to the hourly generation data of solar power plants in Argentina for 

the years 2017-2018. Given the scarcity of information of solar parks in operation (191MW according to Jan-19 

CAMMESA month report), step (4) was simplified to two categories: small plant (less than 20MW) and large plants 

(more than 20MW). 

Direct Solar Radiation data was obtained from Suncycle software -available at UCSD SCRIPPS Institute of 

Oceanography webpage [8]- that gathers information from the US. Naval Observatory. Figure XIII shows an 

example of the direct solar radiation calculated for a given year. 

 
Figure XIII. Direct Solar Radiation (no-sky) values –shown in colorscale-                                                                  

calculated for coordinates (-24.14,-66.91) during year 2026.  

 

Figure XIV shows a plot of sqrt(Power) vs. Solar Radiation for a given solar power plant. Lines connect hour-to-

hour datapoints. Outliers below the curve were filtered for each power plant.     

 
Figure XIV. (a) sqrt(Power) vs. Direct Solar Radiaton for a PV (raw data). Energy was normalized by the plant 

capacity. Solar Radiation was normalized by its maximum value (b) example of (a) for a given week with outliers 

removed for fitting. 
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 Next, regressions were built for both categories of power plants using as predictors the variables summarized in 

Table V. It is worth to outline that although direct radiation captures seasonality effects of power output, as 

described at the beginning of this section, other variables such as temperature do also have seasonal effects that 

affect performance which are tried to be captured by adding “week” binary variables.    

 

 

ϑ1-53: Week i (i=1,...,53) (binary variables) 

ϑ54: Direct Radiation 

ϑ55: Direct Radiation^2 

ϑ56: Direct Radiation^3 

 

Table V. Overview of variables for deterministic solar energy forecasting.                                                                                                   

ϑ1-53 corresponds to binary variables. ϑ54-56 are continuous variables. 

  

Figure XV shows an example of how a deterministic model (for >20MW plant) fits the hourly data used for the 

regression. 

 
Figure XV. Robust Fit vs. Hourly Data (Regression Data, random sample) 

 

Stochastic Solar Energy Modelling 

 

The residual solar energy results from substracting the deterministic model to the original hourly data. Figure XVI 

shows the residual that results from this operation. Time periods where there was not energy output (i.e. after 

sundown before sunrise) were estimated using a sunrise and sundown estimation function available with Suncycle. A 

binary variable (δ=1= After sunrise, before sundown; δ=0= After sundown, before sunrise) was added to model the 

series.   

 

 
Figure XVI. (a) Detail of raw -Residuals vs time  (b) -Residuals vs time for δ=1 (After sunrise, before sundown) 

 

A Dickey and Fuller test was performed to check for stationarity. The test indicated that the hypothesis is TRUE so 

we can reject the unit root hypothesis with a significance level of pvalue=10-5. Therefore, we can assume that the 

residual solar energy is stationary.   



Next, the sample partial autocorrelation function was obtained to study potential time series models (see Figure 

XVII). This graphs show a strong autocorrelation with the 1st lag. For simplicity’s sake, an AR(1) model was chosen 

to model the deterministic forecast residuals. 

  

 
Figure XVII. Sample partial autocorrelation of residual solar energy 

 

Partial autocorrelation function of the time series residuals was obtained as shown in Figure XVIII. This graphs 

shows that most autocorrelation was removed to a significant level (confidence interval  with M=8760 

hours).  

 

 
Figure XVIII. Sample partial autocorrelation of residual solar energy 

 

Aggregated Solar Power Energy Simulation  

 

Analogously to wind power energy modelling, a bottom-up simulation can be performed using only the described 

infrastructure metadata: geographic coordinates provide direct solar irradiation information that can be translated 

into normalized power using the deterministic regression model according to the capacity (lower or higher than 

20MW). Energy output, then, can be calculated using the installed capacity of a solar plant. 

Cloud shadowing modelling was simplified by taking a representative AR(1) time series of only one power plant for 

each capacity category. It is important to outline that this is a simplified approach that does not take into account 

spatial (eg. a cloud front that shadows nearby PV plants) and temporal correlation.   

Solar power park infrastructure by 2026 was extrapolated assuming installed plus to be operational wind power 

plants will be available by that date (see Figure XIX for example). Given that solar capacity by 2026 will exceed the 

former projects, additional power plants were added randomly in the main solar project areas following the same 

distribution as the Renovar projects. 
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Figure XIX. Distribution of Res.202, Renovar 1, 1.5 and 2 solar park projects 

 

 

Figure XX shows the result of a simulation using the procedure described in this section.  

 

 
Figure XX. 4,000MW solar power installed capacity energy simulation for 8760h (1year) 

 

 

Nuclear, Hydro, Biogas and Biomass Energy Generation 

 

Nuclear power infrastructure in Argentina consists of 3 power plants: Embalse (648MW), Atucha I (357MW) and 

Atucha II (745MW). Capacity by 2025 is very unlikely to change radically given that new power plant projects in 

Argentina were suspended because of budget constrain, plus the average construction time for a PWR is in average 

7.7 years[9]. CAREM 25MW mini nuclear power reactor will be assumed to be operational by 2026 and a power 

increase for Embalse of 35MW that will be available in 2019. These will be included in the 2026 estimations. 

Assuming nuclear power generation is flat and an average capacity factor of 85% (eg. Embalse capacity in 2006 was 

89% and Atucha capacity in 2016 was 80%) gives a total of 1539MW.  

Biomass and biogas power generation in Argentina is rather limited. According to the biomass committee of CADER 

(Cámara Argentina de Energías Renovables) there are currently between 60 and 80 biomass plants in Argentina of 

which only 20 are over 1MW (except for Prodeman 10MW peanut biomass plant) [10]. According to CAMMESA 

January 2019 monthly report, biogas generation at the beginning of 2019 was 24MW. Renovar 1, 1.5 and 2 biomass 

and biogas awarded projects account for 236MW. Assuming capacity doubles by 2026 to 550MW, energy 

generation is flat and an average capacity factor of 85%, this gives a total of 465MW. 

 

 

 



 

Current Run-of-the-river hydroelectric power infrastructure in Argentina (Alvarez Condarco, El Tigre, Nihuil IV, 

Arroyito, Cuesta del Viento, Ullum, Quebrada de Ullum, San Roque, Los Molinos II and Salto Grande) equals 

336.5MW plus 945 MW for Salto Grande giving a total of 1281 MW. Mini hydro assigned during Renovar 1, 1.5 

and 2 tenders sums 32MW of installed capacity.  

Yacyreta hydroelectric plant is an impoundment facility of 3100MW of which 2745MW corresponds to power 

available for Argentina. Although impoundment facilities have the capacity for storage, Yacyreta is used as a 

baseload plant keeping dam water levels high which leaves almost no margin for water storage. Therefore, Yacyreta 

falls into the category of inflexible hydroelectric power generation and should be considered for this calculation.      

Projects to be operational by 2026 were identified from which two potential candidates were analyzed for this 

estimation. The first is a Nahueve run-of-the-river hydroelctric power plant which has 4.6MW of installed capacity. 

The second was 360MW La Barrancosa (downstream plant of the Santa Cruz hydroelectric project) given an 

operation constraint realted to an environmental commitment to turbine all stored water within 24 hours.  

Taking all the above aspects into consideration, the following was assumed for the estimations. Given that Salto 

Grande and Yacyretá capacity power adds a significant capacity (3690MW), historical hourly data (years 2011-

2018) was gathered to run in the simulations. For the rest of the hydro infrastructure to be operational by 2026, it was 

assumed that mini hydro capacity triples by 2026 (96MW of installed capacity), energy generation is flat (not a quite 

realistic assumption) and an capacity factor of 45% (representative of the mode value of a RoR hydro in Argentina), 

which gives a total of 358MW. 

 

Residual Load Simulations and Results 
 

Based on the methods described in the previous sections, the residual load for Argentina by 2026 was calculated. 

Scenarios for energy demand (High, Base and Low) were described in the 2026 Scenario Demand Forecast 

Modelling section. Figure XXI shows 3 simulations ran for each of the scenarios described in Table IV.  

 
Figure XXI. demand simulations for 2026 scenarios: high (left), base (center), low (right). Graphs show demand 

differences of up to ~2.000MW. Demand in MW shown in colorscale. 

 

A unique infrastructure scenario with high infrastructure development was assumed with a wind and solar capacity of 

10.000MW (60/40 ratio which is representative of the awarded capacity of RenovAr tenders). This gives a total of 

16.842MW of must-run+renewable installed capacity as shown in Figure XXII.  
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Figure XXII. inflexible and renewable installed capacity for 2026 high infrastructure development scenario 

 

Figure XXIII shows an example of a simulation of inflexible generation in 2026 for the mentioned scenario (taking 

Year=2012 hydro historic data). It can be observed that daily curves are modulated by solar power. However, peaks 

do not clearly appear at a specific time (max values predominate before midday in November whereas peaks 

predominate after midday in January) because of hydro and wind effects.  

 
Figure XXIII. Inflexible energy simulation for 2026 scenario. Power in MW shown in colorscale.  

 

Residual load curves were calculated following equation (1) for the 3 mentioned scenarios. These estimations were 

run 1000 times for each scenario in order to build confidence intervals. Figure XXIII-XXV show the results.    

 



 
Figure XXIII: residual load curve and 99% confidence intervals for 2026 high demand                                                                

and high infrastructure development scenario 

 

 
Figure XXIII: residual load curve and 99% confidence intervals for 2026 base demand                                                    

and high infrastructure development scenario 

 

 
Figure XXIV: residual load curve and 99% confidence intervals for 2026 low demand                                                   

and high infrastructure development scenario 
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At a first glance, it can be seen that the residual load curve does not cross below the x axis (i.e. residual load is not 

negative for any scenario). However, the residual load tail built for the base/low demand scenario approaches values 

close to 0. The minimum residual load calculated for all experiments was only 79MW –although it is highly unlike to 

happen-. Figure XXVI shows the result for one simulation (Low Demand Scenario) that helps to visualize the time 

where the residual load reaches its lowest value. It is worth to outline that this happened (1) during the first days of 

January (either during midnight or in the morning), (2) in the 18h-20h time interval between April 15th and June 

15th, and between September 15th till December, and (3) at midnight during winter holidays.       

 
Figure XXVI. residual load simulation for a 2026 low demand scenario. Residual Load in MW shown in colorscale. 

Max colorscale value was set to 5000MW. 

 

Conclusions 

 

Based on the results described in this paper, residual load is unlikely to become negative by 2026 which means there 

will not be energy surplus from inflexible generation to be stored, at least, at a moderate scale.  

Wind modelling analysis showed correlation between wind parks decays exponentially as distance increases -in 

accordance with [7]- which can be modelled as  with b=-4.8*10-3.  This aspect should be taken into account 

when conducting energy planning since it seems Argentina has a trend to cluster wind parks (eg. Bahía Blanca, 

Arauco, etc.) which could lead to a decrease in residual load.  

Solar generation modelling could be also improved given that the current model does not account for spatial and 

temporal correlation of cloud shadowing. However, this could be included when solar infrastructure deployment 

makes more information available. The author estimates shadowing correlation is likely to increase extreme values in 

aggregated solar energy.    

Further studies should also include further sensitivity analysis regarding inflexible generation. Wind/solar mix was 

assumed to be fixed in this analysis. It is not clear what would happen by changing this ratio given that minimum 

residual load do not occur when solar generation reaches its maximum as it was shown for these simulations. 
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