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1 Introduction & sketch of methodology

A number of existing energy demand studies estimate panel data models of the form:

qit = µi + µt + βPpit + βY yit + uit (1)

Where q is a measure of energy consumption, p a measure of prices and y a measure

of income - often all expressed in naural logarithms. µi, µt, βP and βY are parameters to

be estimated. The time-based fixed effects (FE) in these models (µt) have, in a number of

applications, been used as a proxy for a panel variant of the underlying energy demand

trend (UEDT). The UEDT concept was initially cast within a pure time-series data

context, using a structural time series modeling framework to obtain underlying demand

trends as an unobserved component to be estimated. The single equation specification,

as it has appeared in previous literature, can be expressed (in state space form) as:

qt = µt + β1pt + β2yt + ηt (2a)

µt = µt−1 + vt (2b)

One distinguishing feature of this specification is that the time-varying intercept µt

is formally time-varying, with the current value of the intercept being some evolution of

itself in the previous period, typically via a random walk process. The same however

cannot be said for the µt fixed effect terms in the panel model in Eq. (1), which are

independent of each other in each period by construction.

This model structure in Eq. (2a) and Eq. (2b) can be extended with relative ease to

multivariate settings that are amenable to panel data modeling. Restrictions on certain

model parameters can be used to essentially mimic the typical assumptions adopted when

modeling panel data, in particular the assumption of common parameters to all panel

members. It is therefore possible to devise a panel data modeling framework in state

space form that directly inherits the spirit of the UEDT as originally outlined in early

time-series based applications, without losing the assumption of common coefficients as

adopted in most existing panel data studies.
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With this in mind, the objective of this study is to evaluate the scope for using state

space models for the purpose of estimating panel UEDT’s. To be more precise, we have

two competing methods: the FE estimator is the ‘reigning champion’, and is well under-

stood, trusted and widely applied; state-space methods are the ‘contender’. Moreover,

the reigning champion only approximates the model the time-varying effects we are inter-

ested in, while state-space models provide a more formal means to model them explicitly.

It is additionally thought that the data-dimensions, especially along the T dimension for

the contender mean that it should not be able to compete against the champion i.e. that

the methods cannot compete in the same weight class.

The steps involved in the study are:

• Compare and contrast the FE and state-space techniques for the purpose of recov-

ering time-varying intercept effects (e.g. a UEDT style effect) under the following

true data generating process (d.g.p.):

qit = µt + βPtpit + βY tyit (3)

i.e. constant coefficients on two exogenous variables, and a time-varying common

intercept term. The above d.g.p. will be simulated many times over in a Monte

Carlo exercise, snd the FE and state-space models will be pit against each other in a

contest to provide the most accurate and reliable estimates of key model parameters.

• The comparisons discussed above will be conducted under modest panel dimensions,

both with respect to T and N . This is to provide a fair and objective evaluation

of the potential to apply state-space based approaches to the types of datasets we

still see widely in practice. These dimensions will run from small (to the point that

most editors may simply desk-reject the paper), through medium (where referees

are likely to reject) to moderately large.1 The following values will be considered:

T = 5, 10, 15, 20, 25, 30 and N = 5, 10, 15, 20, 25, 30.

• Points of comparison will include both individual parameter accuracy as well as

overall model accuracy.

Besides the fact the state-space approach can in principle replicate FE estimates,

another perhaps more appealing feature of this technique is its flexibility to extend from a

1Large dimensional datasets are not explicitly considered, since different complications can emerge in
the presence of high-dimensional data.

2



time-varying intercept into a fully time-varying framework. The simulations will therefore

also be conducted using a fully time-varying d.g.p. e.g.:

qit = αi + αt + βPtpit + βY tyit (4)

1.1 From common coefficients to ‘coefficient clubs’.

The maintained assumption in much empirical research, is that the price and income

elasticities are common to all panel members. This assumption can be relaxed, and a yet

more general panel representation might be given by:

qit = µ
(κj)
t + β

(κk)
1t pit + β

(κm)
2t yit + ηit (5)

κj, κk and κm are identifier functions used to denote membership/clustering of co-

efficients into clubs with j ∈ J , k ∈ K and m ∈ M , and {J,K,M} ≤ N . While full

details are not provided here (owing to space considerations), it is possible to identify

club membership using a relatively simple detection mechanism, that is relatively cheap

in terms of implementation time and with a high degree of accuracy. Note that the de-

tection mechanism also operates as a simple test for panel membership, not just panel

clustering. Specifically if J = K = M = N , then we have perfect heterogeneity and

the panel members might best be handled as individual time-series. In any other case,

there would be evidence of some non-trivial panel structure or coefficient clubbing. We

might imagine a-priori that J , K and M will typically be small, both relative to N and

in absolute terms. Lastly note that when J = K = M = 1, there is only one club e.g.

parameters are common across all panel members.

2 Preliminary Results

The table contained at the end of this extended abstract summarizes part of the base

simulation results, for combinations of N and T ranging from 5 to 30 in increments of

5. Panel A shows summary results for the first data generating process using the two

models. Without exception, the state-space model (i) is at least as likely as FE models

to provide estimates of the time-varying intercept in which the true values lie within the

estimated confidence intervals and (ii) provides more accurate point estimates, more often

than FE models. The simple conclusion being, you are more likely to have more precise

estimates with equally reliable confidence intervals, even in small data samples, using a

simple state-space structure instead of an FE estimator.
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Panel B extends the analysis to the case of fully time-varying panel data specifica-

tions. Unsurprisingly the state-space approach outperforms the FE model, but not only

this we can observe it has generally strong performance in very modest data dimensions.

The implications of the results in this table are not only that state-space methods would

outperform FE models–that is an intuitive conclusion–but more importantly that they

appear to have quite pleasing overall accuracy. With data dimensions of just T = 15 and

N = 15 or above, the state-space approach will provide estimates that both imply sig-

nificance where it should, and have the true coefficient values in the confidence interval,

in upwards of 74% of all replications. This gets closer to 90% when T = N = 30, and

should improve further still as samples continue to grow in either dimension. These sorts

of results are not implied by asymptotics, nor (arguably) are they consistent with the

consensus understanding carried by most empirical researchers.

Having established some evidence to support the potential viability for state-space

models to be used in panel applications, a simple empirical exercise is done to model

time varying features in a dataset on industrial energy demand for the OECD 17 (a

dataset previously studied using FE models). The empirical application also exploits a

panel-clustering mechanism to club the coefficients in the spirit discussed above. Results

are reported in Figures 1 and 2. Figure 1 shows that there is some visible heterogeneity

in income elasticities of industrial energy demand with evidence of both coefficient club-

bing and time-varying parameters. The number of identified clubs is much less than the

number of panel members.2

For the UEDT’s in Figure 2, we see more heterogeneity. Notable features are (i)

the number of UEDT clubs is still less than the number of panel members and (ii) club

membership for the UEDT is not the same for income elasticities as for the UEDT (or

for price elasticities, not reported here). Thus, two types of heterogeneity are uncovered,

first being the variation over time, and second being the pattern of club allocations. The

patterns of coefficient club membership will likely help to inform policy evaluation and

design, and help prioritize which nations deserve what scale of policy response, and at

what time.

2This toy example could be varied in many ways, in line with recent variables, transformations etc.
that have appeared in recent research, but for the sake of the current illustration it is preferred to keep
things more simple.
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Figure 1: Estimated coefficient clubs for the income elasticity of energy demand for total

energy among the ‘OECD 17’ countries, 1960-2006. N=17, T=47, κ=3.

Figure 2: Estimated coefficient clubs for the underlying energy demand trends (UEDTs)

for total energy among the ‘OECD 17’ countries, 1960-2006. N=17, T=47, κ=8.
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Panel A: True d.g.p. Y ∗
it = αt + β1X1it + β2X2it

FE Coverage and significance: αt

Length of time series T

N 5 10 15 20 25 30

5 0.36 0.50 0.52 0.55 0.48 0.51

10 0.56 0.61 0.68 0.67 0.69 0.66

15 0.58 0.68 0.73 0.80 0.75 0.73

20 0.67 0.70 0.75 0.78 0.78 0.76

25 0.65 0.77 0.77 0.79 0.80 0.81

30 0.70 0.74 0.80 0.81 0.86 0.85

TVP Coverage and significance: αt

Length of time series T

N 5 10 15 20 25 30

5 0.37 0.43 0.45 0.48 0.47 0.52

10 0.61 0.68 0.71 0.74 0.78 0.78

15 0.65 0.73 0.77 0.83 0.81 0.79

20 0.72 0.76 0.79 0.80 0.83 0.84

25 0.72 0.79 0.80 0.82 0.84 0.84

30 0.76 0.79 0.82 0.84 0.85 0.86

FE Relative accuracy score: αt

Length of time series T

N 5 10 15 20 25 30

5 0.45 0.38 0.42 0.36 0.35 0.31

10 0.42 0.41 0.38 0.32 0.32 0.32

15 0.42 0.36 0.36 0.37 0.33 0.34

20 0.41 0.40 0.38 0.37 0.34 0.33

25 0.41 0.43 0.39 0.38 0.36 0.35

30 0.43 0.42 0.41 0.37 0.40 0.37

TVP Relative accuracy score: αt

Length of time series T

N 5 10 15 20 25 30

5 0.55 0.62 0.58 0.64 0.65 0.60

10 0.58 0.59 0.62 0.68 0.68 0.68

15 0.58 0.64 0.64 0.63 0.67 0.66

20 0.59 0.60 0.62 0.63 0.66 0.67

25 0.59 0.57 0.61 0.62 0.64 0.65

30 0.57 0.58 0.59 0.63 0.60 0.63

Panel B: True d.g.p. Y ∗
it = αt + β1tX1it + β2tX2it

FE Coverage and significance: αt

Length of time series T

N 5 10 15 20 25 30

5 0.19 0.43 0.41 0.41 0.39 0.47

10 0.20 0.56 0.50 0.54 0.53 0.48

15 0.19 0.57 0.53 0.52 0.59 0.43

20 0.19 0.38 0.60 0.60 0.54 0.71

25 0.30 0.48 0.48 0.63 0.52 0.64

30 0.35 0.43 0.49 0.43 0.52 0.57

TVP Coverage and significance: αt

Length of time series T

N 5 10 15 20 25 30

5 0.32 0.41 0.47 0.47 0.48 0.55

10 0.58 0.65 0.70 0.72 0.76 0.77

15 0.61 0.70 0.75 0.82 0.80 0.78

20 0.68 0.75 0.78 0.80 0.82 0.84

25 0.68 0.77 0.80 0.82 0.83 0.84

30 0.72 0.78 0.81 0.83 0.84 0.86

FE Coverage and significance: β1t

Length of time series T

N 5 10 15 20 25 30

5 0.21 0.03 0.05 0.13 0.33 0.25

10 0.09 0.22 0.41 0.14 0.06 0.22

15 0.19 0.32 0.20 0.08 0.13 0.03

20 0.40 0.18 0.22 0.25 0.09 0.10

25 0.11 0.21 0.19 0.13 0.07 0.08

30 0.25 0.11 0.03 0.02 0.05 0.01

TVP Coverage and significance: β1t

Length of time series T

N 5 10 15 20 25 30

5 0.68 0.69 0.71 0.74 0.84 0.72

10 0.75 0.68 0.78 0.77 0.86 0.85

15 0.80 0.68 0.79 0.84 0.78 0.86

20 0.84 0.81 0.74 0.81 0.84 0.75

25 0.76 0.79 0.81 0.74 0.87 0.82

30 0.77 0.79 0.82 0.88 0.87 0.86
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