
   

 

Overview 

While demand-side management (DSM) of energy in general and residential energy efficiency programs in 

particular are gaining increasing attention as a means to achieve both customers’ electricity bill savings and 

substantial greenhouse gas abatement, there still are major opportunities to improve their cost-effectiveness 

implementation. One potential direction for improvement is to improve the accounting of the heterogeneity of 

household energy behavior. Previous studies have proposed discipline-specific models and theories on individual 

households’ decision making and its determinants [1]. However, little has been known concerning the 

interrelationship among the households’ characteristics, which range from socio-demographic and techno-economic 

attributes to contextual environmental factors, and their collective influence on residential energy behavior [2].  

The purpose of this research is to investigate space cooling behavior of households, which accounts for 13.2% of the 

residential electricity demand [3], in terms of their socio-demographic and techno-economic characteristics, offering 

practical guidelines to the design of residential energy efficiency programs. Based on the literature of household 

energy behavior and random utility theory [4], we develop a multinomial logit choice model to characterize 

household energy behavior regarding space-cooling choice. Heterogeneity in the preference for space cooling is 

captured by specifying hierarchical random coefficients for choice attributes that influence the decision and the 

individual-level parameters [5]. The parameters are estimated by a Bayesian procedure. We employ household-level 

micro-data from the 2009 Residential Appliance Saturation Study (RASS) of the California Energy Commission.  

The results reveal that there are significant differences in the preference for space-cooling choice in the California 

households, as characterized by the combination of their socio-demographic and/or techno-economic attributes. 

Making sense of space cooling behavior from such an integrated perspective could help to design tailored energy 

efficiency program portfolios with an improved benefit-cost ratio. The choice model will be extended for other 

related behaviors, such as air conditioner purchase and maintenance, which then provides a balanced, multi-level 

understanding of household energy behaviors.  

 

Methods 

Model Construction 

The Base Model—Multinomial Logit: Our base model specifies a random utility function faced by the individual 

households as a function of attributes that relate to each space cooling alternative. The households’ tastes are 

represented by the coefficients to the attribute variables. Based on the understanding of residential energy behavior 

[6] and viable policy options [7, 8], we suggest two policy-relevant attributes: space cooling cost (𝑋𝐶) and cooling 

service quality (𝑋𝑆). Specifically, the decision maker’s utility consists of three components: the alternative specific 

constant 𝛼𝑗, which is specific to each alternative; the deterministic utility 𝑉𝑛𝑗 , expressed as a function of the 

attributes, 𝑋𝑛𝑐𝑗and  𝑋𝑛𝑠𝑗, and the importance weights of the respective attributes, 𝛽𝑐 and 𝛽𝑠; and the unobservable 

random part 𝜖𝑛𝑗 that is assumed to have a type I extreme value distribution. The utility is thus specified as  

𝑈𝑛𝑗
∗ = 𝛼𝑗 + 𝑉𝑛𝑗 + 𝜖𝑛𝑗 = 𝛼𝑗 + 𝛽𝑐𝑋𝑛𝑐𝑗 + 𝛽𝑠𝑋𝑛𝑠𝑗 + 𝜖𝑛𝑗 

The Random Coefficient Model with Bayesian Estimation: We thus extend the base model to a random coefficient 

framework to account for the heterogeneity in households’ taste or, equivalently, importance weight for each 

attribute variable [9]. That is, the random coefficient model incorporates household variation in the importance 

weights, 𝛽𝑐𝑛 and 𝛽𝑠𝑛. Their variations are assumed to follow the probability distributions, 𝑓𝑐(𝛩𝑐) and 𝑓𝑠(𝛩𝑠), 

respectively. The random coefficient model estimates the distributional parameters, 𝛩𝑐 and 𝛩𝑠, and eventually the 

importance weights, 𝛽𝑐𝑛 and 𝛽𝑠𝑛. We assume lognormal distributions, given that the coefficient for space cooling 

cost (cooling service quality) is expected to have the same negative (positive) sign for all households with only their 
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magnitude differing across them. To conduct a Bayesian estimation procedure, a total of 150,000 random draws are 

generated using Gibbs sampling [8]. After discarding the first 140,000 draws, we take 1,000 draws from rest of 

10,000 draws by taking 1 draw after skipping 9 draws.  

The Hierarchical Random Coefficient Model with Bayesian Estimation: For a more complete analysis, we 

hierarchically integrate the households’ socio-demographic and techno-economic characteristics to explain their 

tastes [10]. Specifically, the taste coefficients are expressed as a linear combination of a set of characteristics, 𝒛𝒏, 

including household configuration, education level, insulation level, heating system type, bill payment type, and 

climatological zone, such that 𝛽𝑐𝑛 = 𝛾𝑐 + 𝜞𝒄𝒛𝒏 + 𝜁𝑐𝑛  and 𝛽𝑠𝑛 = 𝛾𝑠 + 𝜞𝒔𝒛𝒏 + 𝜁𝑠𝑛 , where 𝜞𝒄 and 𝜞𝒔 are parameters 

to estimate.  

 

Data and Variables  

Data Sources: Household-level data on space cooling behavior and associated socioeconomic and technological 

characteristics have been provided by the California Energy Commission's Consortium Residential Appliance 

Saturation Study (RASS). Average diurnal temperature variation information for each of 50 climate zones in 

California have been obtained from the U.S. DOE’s EnergyPlus Weather Format and matched with the household-

level data.  

Model Variables: We specify cooling temperature settings in the cooling season as the multinomial choice 

alternatives. The choice from the alternatives, which is our dependent variable, is representative of the household’s 

deliberate decision making on indoor thermal comfort. In our model, the choice reflects the potential trade-off 

between the level of cooling service quality, 𝑋𝑆, and the associated cost requirements, 𝑋𝐶. In the dataset, six 

temperature setting options are represented for each of four time periods within the day, totaling 25,820 choice 

situations for 6,455 households located in 16 climate regions. 

Attribute Measurement: This study proposes the proxies for the two attributes, 𝑋𝑆 and 𝑋𝐶. The cooling service 

quality 𝑋𝑆 is measured by the Humidex implied by each choice, an commonly used index for thermal discomfort 

[11]; the disutility from inadequate service is therefore quantified. The cooling cost requirement 𝑋𝐶 is scaled by the 

implied gap in indoor and outdoor temperatures with the assumption that the cooling cost is proportional to the 

temperature gap all else being equal.  

 

Results 

The Base Model: The model parameters are all significant and have the expected signs—both of the importance 

weights, (𝛽𝑛𝑐, 𝛽𝑛𝑠), have negative values. That is, the households prefer to choose options with lower cooling costs 

and discomfort levels.  

Table 1. Estimation Results of the Base Model 

 𝜷𝒏𝒄 𝜷𝒏𝒔 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜶𝟓 𝜶𝟔 

Estimate -0.1421 -0.0441 -2.555 -1.4822 -0.9953 -0.354 -1.5258 

Std.Error 0.0166*** 0.0169** 0.0393*** 0.0288*** 0.0233*** 0.0186*** 0.0256*** 

† P<0.10, * P<0.05, ** P<0.01, *** P<0.001 

The Random Coefficient Model with Bayesian Estimation: From the Bayesian procedure, the taste coefficients 

have been recovered for the individual households. We then aggregate the entire households according to their 

household configuration (H) and residence type (R), such that four segments with different household configurations 

and five segments with different residence type are generated.  

Figure 1. The Mean of the Coefficients for all/each Segments from Random Coefficient Model 

 



In addition, the difference in the taste coefficients between the nine groups has been tested using the multivariate 

analysis of variance (MANOVA). Interestingly, the inter-group difference in taste coefficients for cooling service 

quality is found to be significant for those with different household configurations, whereas the inter-group 

difference in taste coefficients for cooling cost requirement remain prominent for those with different residence 

types.  

 

Conclusions 

Our study shows that each household’s preferences for space cooling are extremely heterogeneous. It nevertheless 

demonstrates that such heterogeneous preferences can be identified and explained by their underlying socio-

demographic and techno-economic characteristics by using the random coefficient discrete choice model. At an 

aggregate level, the household preferences for cooling service quality were found to be sensitive to household 

configurations (socio-demographic), while those for cooling cost requirement remained sensitive to residence types 

(techno-economic). Such results imply that more detailed policy pathways are possible to policy designers. For 

example, the policy strategy depending on consumers’ cost sensitivities, such as dynamic price feedback system, 

could be considered for the areas where houses are concentrated.  

The integrated, household-level perspective revealed by this work, as opposed to the conventional average 

household approach, points out to the need of more extensive empirical study on residential energy behavior that 

explicitly accounts for household heterogeneity. Similar analyses can also be extended to other energy behaviors 

with major implications for energy savings, such as appliance purchase and maintenance decisions, which is a 

promising direction for future research. Such studies will help utility planners to develop household efficiency 

programs with lower marketing costs and increased customer participation, ultimately improving the cost-

effectiveness of the programs.  
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