
   
 

Overview 
Demand-side management of electricity is receiving growing attention as a key enabler of the smart grid and a solution 
for promoting grid resilience to increasing penetration of renewable sources. Despite various demand-side 
management programs are contemplated and actively implemented by utilities and regulators in North American and 
European countries, the demand response behaviour of electricity customers to price signal or to incentive payments 
are not well understood (Neenan and Eom, 2008).  

This study investigates the demand response of commercial and industrial customers to the first Korean critical peak 
pricing (CPP) pilot which was implemented in the winter of 2013. The demand responses of 802 businesses covering 
34 commercial and industrial categories are evaluated and characterized based on two different econometric 
approaches. The first approach utilizes the individual customer baseline loads (CBLs) and a nested constant elasticity 
of substitution (CES) demand function. The nested CES function is constructed to allow for different levels of price 
elasticities in different pricing periods, for example, the substitution between the second mid-peak period (13PM-
17PM) and the first (11AM-1PM) or the second (18PM-21PM) critical peak period, as well as their respective own-
price elasticities (Herriges et al., 1993; Schwarz et al., 2002; Taylor and Schwarz, 1990). Several alternative CPP rate 
scenarios will be developed to provide policy recommendations.  

Second, we estimate own-price and cross elasticities using the demand equation derived from the Generalized 
McFadden(GM) cost fuction (Diewert and Wales, 1987). Patrick and Wolak (2001) and Taylor et al. (2005) utilized 
the GM model to estimate elasticities of each pair among separate hours (or semi-hours) in the RTP program. As a 
second-order flexible functional form, the GM model imposes global concavity in itself. This would resolve the 
curvature restriction problem in the traditional (first-order flexible) models, such as translog model (Diewert and Wales, 
1987). Moreover, the GM model would address the complementarity issue which shows small positive or negative 
cross elasticities between very adjacent time periods (Patrick and Wolak, 2001). Given that the above nested CES 
model also concerns this issue, we would compare the reliability of the elasticity estimates derived from the two 
alternative, qualitatively different demand representations.   

Methods 

1) Korean CPP pilot program 

The Korean CPP pilot program is characterized by a three-tiered rate structure with the default being a time-of-use 
(TOU) tariff (Figure 1). The rates in peak period—critical and mid-peak periods—under the CPP tariff is set higher 
than the default TOU tariff: The critical peak price is about 4.8 times higher than the peak price on non-event days 
with the customers’ increased cost burden being offset by decreased costs on the normal days. The CPP consists of 
eight time blocks in total, comprising three critical peak periods on the event day, three mid-peak periods adjacent to 
the critical peak periods, and two off-peak periods in both ends of the day. The reason for this unusually complicated 
tariff design is to maintain a similar structure as the default TOU rate. This multiple, shorter critical peak periods on 
the event days are expected to make it easier for the customers to shift their electricity loads to neighboring lower 
priced periods. 

 

[Figure 1] Rate structure of Korean CPP program for the effective event duration 
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2) Estimating elasticities using the nested Constant Elasticity of Substitution (CES) model 

The process of estimating electricity customers’ demand response to the CPP price signal consists of two stages. First, 
we assess the demand-response load impacts by constructing hourly CBLs for the individual customers and comparing 
with their hourly load profiles measured on CPP event days. In our study, fixed-effects regression models are used to 
construct the CBLs, the process of which is documented in Jang et al. (2015). Fixed-effects regression formulation is 
regarded to give precise and transparent estimates (Woo and Herter, 2006) and has been employed several recent pilot 
studies as a convenient and reliable way of constructing CBLs (Cappers, et al., 2013; Goldberg and Agnew, 2013). 
To improve the accuracy of the CBL estimation, we clustered the customers according to the similarity in pre-
enrollment hourly load patterns before conducting the fixed-effects regression. Seven fixed-effects regression models 
are tested for each cluster and the best regression models are selected using goodness-of –fit metrics with the following 
out-of-sample tests confirming the predictive accuracy of the model (Jang et al., 2015; Bode et al., 2013). 

The second stage, which builds on the first, is to represent the customer choice of electricity load within a day and 
between days, estimating their substitution elasticities. Here we assume that electricity inputs are weakly separable in 
the production process with the period-level electricity prices and demands fully represented. For example, we treat 
the three critical peak periods as three separate demand choices within a day, representing their possible substitution 
with the five other periods within so-called effective event duration. The effective event duration is defined as the 54 
hour time window after the notification of the CPP events, indicating the extent to which a customer’s behavioural 
response to a CPP event can take effect. The demand nesting decomposes the effective event duration into eight 
periods with fixed electricity rates. We estimate the elasticities of substitution within any possible two-period 
aggregates within the effective event duration at the first level and between the aggregates and the remaining periods 
at the second level (Figure 2).  

       

[Figure 2] The structure of the customer demand for electricity loads(a) and equations for elasticity 
estimation(b) using the nested CES model 

 

3) Comparision to the Generalized McFadden (GM) model 

As an alternative estimation strategy, we also construct a electicity demand equation based on a Generalized McFadden 
(GM) cost function. Here we adapt a similar setting proposed by Taylor et al. (2005) for the analysis of Duke Power’s 
real time pricing pilot, accounting for the special features of Korean CPP pilot and its data availability. Our temporal 
electricity demand function is given as follows: 
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𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖: the demand in MW for period i, day d, customer k 
P𝑍𝑍𝑚𝑚: the producer price index for month m 
𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖: the price in KRW/MWh for period i, day d, customer k 
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖: the temperature in degrees ℃ for period i, day d, customer k 
𝑌𝑌𝑖𝑖𝑖𝑖: the daily output on day d, for customer k 
𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖: the unobserved random vector with mean 0 and covariance matrix Ω 

Time period i = 1,2, … ,8: 1= period 1(OP1), 8=period 8(OP2) 
Day d = 1, … ,61: 1=2012 December 3,…, 61=2013 February 28 (only weekdays, 14 weeks) 
Customer k = 1, … , N: (only those belong to sectors with no less than 10 firms) 
Month m = 1,2,3: 1=December, 2=January, 3=February 

Parameters to be estimated are 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 , and 𝑑𝑑𝑖𝑖𝑖𝑖. To impose the global concavity in the GM model, we estimate 
the 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖’s as C = −MM′, where M is a lower triangular matrix. This enables the matric C to be negative semidefinite, 



and the existence of the matrix M is proved by the Lau’s theorem (Diewert and Wales, 1987). As we have no 
information for 𝑌𝑌𝑖𝑖𝑖𝑖, we make the following assumptions for the daily output index (Taylor et al., 2005): 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 ∗ 𝐷𝐷𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 ∗ 𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖  

where each component is of the general form: 

DOW = 1 + 𝑊𝑊1 ∗ 𝑀𝑀𝑀𝑀𝐸𝐸𝑑𝑑𝑎𝑎𝑀𝑀 + ⋯+ 𝑊𝑊4𝑇𝑇ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑑𝑑𝑎𝑎𝑀𝑀 

Week = 1 + 𝑓𝑓1 ∗ 𝐷𝐷𝑊𝑊𝑊𝑊𝑊𝑊1 + ⋯+ 𝑓𝑓13𝐷𝐷𝑊𝑊𝑊𝑊𝑊𝑊13 

Event = 1 + 𝑔𝑔1 ∗ 𝑃𝑃𝑢𝑢𝑊𝑊𝑢𝑢𝑃𝑃𝑑𝑑𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑊𝑊𝑐𝑐𝐸𝐸𝑃𝑃𝑀𝑀𝐸𝐸 

Here, we restrict each parameter (𝑊𝑊𝑖𝑖 , 𝑓𝑓𝑖𝑖,𝑔𝑔𝑖𝑖) to be greater than (-1) so that 𝑌𝑌𝑖𝑖𝑖𝑖 to be positive so as to avoid the positive 
own-price elasticities. Note that to avoid over-specification, Friday and Week14 binary variables are omitted.  

Consequently, the set of demand equations comprises nonlinear seemingly unrelated regression (NSUR), of which 
coefficients are estimated through iterated feasible general least squares (IFGLS). From the fitted demand equation, 
we would obtain the own-price (when i = j) and cross-price (when i ≠ j) elasticities for customer k on the day d with 
the relationship given as follows: 
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Hence, the price elasticity between period i and j of customer k is obtained by substituting the estimates 𝑐𝑐𝚤𝚤𝚤𝚤𝑖𝑖� ,𝑌𝑌𝑖𝑖𝑖𝑖�  into
this equation with 𝑃𝑃𝑍𝑍𝑚𝑚 ,𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 , and 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 provided from the input data. Finally, given that each term of demand equati
on is linear, this type of elasticity equation still hold after summation and averaging in customer k, period i or day d 
with respective energy use as weights. This yields the price elasticities aggregated in the industry level. 

Results 
Having completed the first stage of the analysis—construction of structural equations and CBLs—we are now 
intensively conducting the second stage of the research—econometric estimation of substitution elasticities. Given 
preliminary results we obtained so far, the CPP events indeed alter the load patterns of the Korean industrial and 
commercial customers formerly under the TOU rates with the average industry customer that exhibit greater response 
than the average commercial customer. There are substantial differences in demand response behaviors across and 
within the business sectors with the magnitude of response closely related to the sectors’ expenditure shares of 
electricity. As far as between-day load shift is concerned, industrial customers seem to shift a significant amount of 
load to neighboring days, whereas, for commercial customers, no noticeable load shifting to neighboring days is 
observed. The econometric estimation of the substitution elasticities is underway.  

Conclusions 
A firm-level investigation we conducted so far clearly confirms wide-ranging differences in demand responsiveness 
across and within business categories. In the industrial sector, the metals, chemicals, rubber and plastics, wood, and 
paper segments seem to be highly price responsive, exhibiting conservation and shifting responses altogether. By 
contrast, metal ore mining, electronic equipment, other transport equipment, and water supply segments indicate slight 
or virtually no response. In the commercial sector, warehouse and sauna services seem to present the strongest 
response, whereas accommodations, real estate, and public administration and defense services remain nearly 
unchanged with the CPP events, which is largely consistent with earlier findings. Detailed and robust policy insights 
based on the fitted electricity demand functions will be derived, in combination with the analysis of several alternative 
CPP rate scenarios.  
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