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Impact of  RE Policy on Technology Costs-PV System 
Costs in Germany
By Barbara Breitschopf

OVERVIEW

Since the adoption of its Renewable Energy (RE) act in 2000, Germany has intensified its effort for 
renewable energy technology (RET) deployment. The primary instrument has been feed-in 
tariffs, which have faced several adjustments in magnitude and specific designs. While costs 
for consumers have increased considerably from 4.7 bill Euro in 2008 to almost 19 billion Euro 
in 2014 (Monitoring Report 2015), benefits for consumers are more difficult to capture and 
quantify. To do so, the approach relies on a const benefit concept, which looks at additional 
costs and benefits at system-, micro- and macroeconomic levels (Breitschopf, B., Held, A. 2014). 
While additional costs for final electricity consumers occur at the micro level, benefits serve 
special attention as they accrue across all levels and are difficult to allocate to individual actors. 
Among them, the contribution to innovation and technology cost development is considered 
as one major positive aspect of RE policy support. Technology costs, especially PV system costs 
have shown a tremendous decline over time. This paper strives to assess the impact of the German 
RE policy on RET costs in the case of PV in Germany. Increased attention has been paid to the learning 
curve concept (Ek & Söderholm, 2009). This concept will be extended by taking into account interde-
pendencies between technology, demand, and supply. 

LITERATURE REVIEW ON LEARNING CURVE APPROACH

Decreasing cost of production have been observed and first described by {Wright 1936}. He explained 
them by learning effects, i.e. workers became more efficient as they produced more units of the same 
product with the same technology. Based on these observations, Arrow (1962) sketched a model ex-
plaining technological changes as a function of learning (Nemet, 2006). Learning curves in their basic 
form are derived by regressing the price or cost (De La Tour et al., 2013) of the technology in question 
on cumulative production. The derived One-Factor-Learning-Curve (OFLC) relates cost development 
to accumulated learning, usually represented by cumulative capacity. As the high level of aggregation 
in OFLC considerably simplifies cost dynamics (Wiesenthal et al., 2012), researchers started to extend 
the OLFC approach to a Two-Factor-Learning-Curve (TFLC). In TFLC models, investments costs are not 
only explained by cumulative capacity but also by an R&D based knowledge stock (Klaassen, Miketa, 
Larsen, & Sundqvist, 2005). Although Wiesenthal et al. (2012) point out, that it is already questionable 
whether the effects of learning-by-doing and learning-by-searching should be disentangled since they 
are both parts (and not the only parts) of one integral learning process, steps towards a Multi-Factor-
Learning-Curves (MFLC) have been proposed. In particular, researchers (e.g. De La Tour et al. (2013) , 
Yu (2012)) draw on details given by Henderson (1972) concerning the originating idea of the experience 
curve by the Boston Consulting Group. He recalled that the experience curve does not solely refer to 
the  relationship between productivity and output but should regard learning effects, scale effects, 
cost rationalization and technology improvement jointly (Henderson, 1972). While Yu et al. (2011) show 
significant results by incorporating scale effects, silicon price, silver price and a proxy for other input 
prices, De La Tour et al. (2013) report a notably higher learning rate by just incorporating experience and 
silicon price. Nemet (2006) develops a bottom-up cost model using the example of PV technology. The 
approach disaggregates historical cost reductions into observable technical factors. He suggests a set 
of observable technical (e.g. efficiency improvements) factors whose impact on cost can be immediately 
calculated. Nevertheless, Nemet (2006) isn’t able to fully explain the cost development. 

APPROACH 

This paper analyses how strongly the demand pull policy (FIT) in Germany has driven the technol-
ogy costs of PV installations over time. The analysis relies on historical cost data, i.e. on levelized cost 
of electricity (LCOE) generation from PV installation. The starting point are learning curves. But this 
approach has a flaw as the data used to depict “costs” of RET in learning curves represent not costs 
but market prices determined by demand and supply. This calls for taking market pricing into account, 
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which embeds implicitly utility or profit maximization at the demand side as well. In addition, market 
pricing is an interaction between demand and supply. Subsequently, apart from “original” learning ef-
fects, interactions and economies of scale and, as Kahouli-Brahmi (2008) states, learning-by-using, which 
reflects the user’s feedback, and learning-by-interacting, which takes place at a large diffusion stage, 
push costs. For this study, LCOE is modeled as a function of demand for PV (annual installations), input 
prices, PV market development (production and structure), R&D spending, learning (cumulated installa-
tions) and external factors. As there are interactions between demand and LCOE, demand is depicted 
as a function of LCOE, expected returns on PV investments, preferences (environmental) and external 
factors. Finally, returns depend on LCOE and revenues that are triggered by RE support, i.e. demand-
pull policies. The approach is depicted in Figure 1. Learning-by-using or interacting are not separately 

addressed and might be captured by cumulated 
installations while economies of scale might be 
reflected by average production per firm. Using 
the structural equation approach (SEM in Stata), 
the specified model are assessed by simultane-
ous (observed information matrix and robust 
estimator variance, see Annex with standard-
ized and non-standardised coefficients), and 
non-simultaneous estimations. The observations 
mainly cover the period 1983 to 2015.

RESULTS AND DISCUSSION

Demand (annual capacity) affects LCOE by about 0.1% in the short-run. The strongest impact on 
LCOE (price) has the input price with 0.3% followed by learning-by-doing effect (cumulated capacities), 
considered as long-term effects with about -0.2%, and the global deployment. Demand is strongly and 
significantly affected by costs (-4%). Finally, the return depends on LCOE, but if these are skipped, then 
the pull effect explains to a small degree returns, and hence the impact on demand.The primary impact 
of demand pushing policies augments prices through increased demand but as demand immediately 
is reflected in growing cumulated installations (learning), which significantly reduce costs, policy has, 
in a second step, a declining effect on technology costs. Simultaneous and nonsimultaneous regres-
sions show different impacts, but they consistently report significant results for the LCOE regression 
for capacities, while other factors are either not well captured or insignificant. Inconsistent results are 
obtained regarding demand: the non-simultaneous approach does not report significant coefficients 
for demand. Even so this approach builds on learning curve approaches, there remains one major 
drawback: the estimator is based on cross-sectional data while time series data (mainly non-stationary) 
are applied. Applying time series based estimators requires an adjustment of the initial research ques-
tion. This also includes the design of the exogenous variable capturing demand-pull policies. Finally, 
one problem can only be solved over time: the limited number of observations.  
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Figure 1: Structural model and dependent and explaining factors
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Annex

LR test of model vs. saturated: chi2(17)  =    120.62, Prob > chi2 = 0.0000

var(e.lnmargincorr)    .4777777   .1052915                      .3101988    .7358877
    var(e.lncapann)    .1100997   .0339745                      .0601344    .2015809
      var(e.lnlcoe)    .0116485   .0043564                      .0055966    .0242443

             _cons     59.84182   6.407214     9.34   0.000     47.28391    72.39973
        lnpullcorr     .1455613   .1496193     0.97   0.331    -.1476871    .4388097
            lnlcoe    -.6804165   .1300076    -5.23   0.000    -.9352266   -.4256063
  lnmargincorr <-   

             _cons    -12.01877    7.35805    -1.63   0.102    -26.44028    2.402747
           lngdp_r    -.1341459   .3361299    -0.40   0.690    -.7929484    .5246566
      lngreenvotes    -.4210799   .1709337    -2.46   0.014    -.7561038    -.086056
      lnmargincorr     .4057717   .2257839     1.80   0.072    -.0367567    .8483001
            lnlcoe    -1.147056   .2580794    -4.44   0.000    -1.652883     -.64123
  lncapann <-       

             _cons     1.223865   .5088762     2.41   0.016     .2264859    2.221244
          lncompet    -.0267843   .1345776    -0.20   0.842    -.2905515    .2369828
      lnglobannger    -.4311355   .0932107    -4.63   0.000    -.6138252   -.2484458
          lncapcum    -.9570727   .1919338    -4.99   0.000    -1.333256   -.5808893
                    
               L1.    -.0035988    .026749    -0.13   0.893    -.0560259    .0488284
          lnrd3yav  
                    
           lnmodul     .0775672   .1647408     0.47   0.638    -.2453189    .4004533
         lnpricesi      .132838   .0281547     4.72   0.000     .0776558    .1880202
          lncapann     .4301312   .1542895     2.79   0.005     .1277294    .7325331
  lnlcoe <-         
Structural          

      Standardized        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                     OIM

Log likelihood     = -49.063726
Estimation method  = ml
Structural equation model                       Number of obs      =        30

Table 1: Regression results OIM model (standardised)

var(e.lnmargincorr)    .0014844   .0005572                      .0007113    .0030978
    var(e.lncapann)    2.421537    1.20952                       .909765    6.445445
      var(e.lnlcoe)    .0147765   .0068988                      .0059178    .0368959

             _cons     3.335596   .0276801   120.51   0.000     3.281344    3.389848
        lnpullcorr     .0108755   .0075234     1.45   0.148      -.00387     .025621
            lnlcoe    -.0336738   .0094442    -3.57   0.000    -.0521842   -.0151634
  lnmargincorr <-   

             _cons    -56.36537   45.08654    -1.25   0.211    -144.7334    32.00263
           lngdp_r    -4.125356   12.81986    -0.32   0.748    -29.25181     21.0011
      lngreenvotes    -9.300073   2.712377    -3.43   0.001    -14.61623   -3.983912
      lnmargincorr     34.14017   21.52887     1.59   0.113    -8.055633    76.33597
            lnlcoe    -4.776242   .9585098    -4.98   0.000    -6.654887   -2.897597
  lncapann <-       

             _cons     1.378429   .4996845     2.76   0.006     .3990652    2.357792
          lncompet    -.0091076   .0353395    -0.26   0.797    -.0783718    .0601565
      lnglobannger    -.1877192   .0343511    -5.46   0.000    -.2550461   -.1203923
          lncapcum    -.2309867    .040041    -5.77   0.000    -.3094656   -.1525078
                    
               L1.    -.0174183   .0853701    -0.20   0.838    -.1847406    .1499041
          lnrd3yav  
                    
           lnmodul     .0220912   .0368689     0.60   0.549    -.0501706     .094353
         lnpricesi     .3139851   .0712062     4.41   0.000     .1744234    .4535467
          lncapann     .1032998   .0396891     2.60   0.009     .0255106     .181089
  lnlcoe <-         
Structural          

                          Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                   Robust

Log pseudolikelihood= -49.063726
Estimation method  = ml
Structural equation model                       Number of obs      =        30

Table 2: Regression results REV modell


