Search

Begin New Search
Proceed to Checkout

Search Results for All:
(Showing results 1 to 3 of 3)



Why Wind Is Not Coal: On the Economics of Electricity Generation

Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer

Year: 2016
Volume: Volume 37
Number: Number 3
DOI: 10.5547/01956574.37.3.lhir
View Abstract

Abstract:
Electricity is a paradoxical economic good: it is highly homogeneous and heterogeneous at the same time. Electricity prices vary dramatically between moments in time, between location, and according to lead-time between contract and delivery. This three-dimensional heterogeneity has implication for the economic assessment of power generation technologies: different technologies, such as coal-fired plants and wind turbines, produce electricity that has, on average, a different economic value. Several tools that are used to evaluate generators in practice ignore these value differences, including "levelized electricity costs", "grid parity", and simple macroeconomic models. This paper provides a rigorous and general discussion of heterogeneity and its implications for the economic assessment of electricity generating technologies. It shows that these tools are biased, specifically, they tend to favor wind and solar power over dispatchable generators where these renewable generators have a high market share. A literature review shows that, at a wind market share of 30-40%, the value of a megawatt-hour of electricity from a wind turbine can be 20-50% lower than the value of one megawatt-hour as demanded by consumers. We introduce "System LCOE" as one way of comparing generation technologies economically.



Determining Optimal Interconnection Capacity on the Basis of Hourly Demand And Supply Functions of Electricity

Jan Horst Keppler and William Meunier

Year: 2018
Volume: Volume 39
Number: Number 3
DOI: 10.5547/01956574.39.3.jkep
View Abstract

Abstract:
Interconnections for cross-border electricity trade improve price convergence and welfare. Increased production from variable renewables however implies higher levels of optimal interconnection capacity than in the past. Rather than using scenario building to determine new optimal levels of interconnection capacity, this paper presents a new methodology for Cost-Benefit Analysis (CBA) based on empirical market data, using the French-German electricity trade as an example. Employing a very fine dataset of hourly supply and demand curves (aggregated auction curves) from the EPEX Spot market, it constructs net export (NEC) and net import demand curves (NIDC) for both countries. This allows assessing hourly welfare impacts for incremental capacity and, summed over the year, the annual welfare benefits for each discrete increase in interconnection capacity. Confronting benefits with the annualised costs of increasing interconnection capacity determines the socially optimal increase in interconnection capacity between France and Germany on the basis of empirical market micro-data.



How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?

Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion

Year: 2022
Volume: Volume 43
Number: Number 1
DOI: 10.5547/01956574.43.1.bshi
View Abstract

Abstract:
Many studies have demonstrated the feasibility of fully renewable power systems. Yet the future costs of key technologies are highly uncertain, and little is known about the robustness of a renewable power system to these uncertainties. To analyze it, we build 315 cost scenarios by varying the costs of key technologies and we model the optimal renewable power system for France, simultaneously optimizing investment and dispatch. We add to the literature by studying a consecutive 18-years weather period; by testing all combinations of technology costs rather than changing them one-at-a-time; and by calculating the regret from optimizing the energy mix on the basis of cost assumptions that do not materialize. Our results indicate that the cost of a 100% system is not that sensitive to uncertainty. Admittedly, the optimal energy mix is highly sensitive to cost assumptions: across our scenarios, the installed capacity in PV, onshore wind and power-to-gas varies by a factor of 5, batteries and offshore wind even more. However, in every scenario the total production and storage cost is similar to, or lower than the current cost. This indicates that renewable technologies will become by and large substitutable. Moreover, even if the energy mix is optimized based on cost assumptions which turn out to be wrong, the extra cost is low: 4% in average and less than 9% in 95% of the scenarios.





Begin New Search
Proceed to Checkout

 

© 2022 International Association for Energy Economics | Privacy Policy | Return Policy