Facebook LinkedIn Instagram Twitter

IAEE Members and subscribers to The Energy Journal: Please log in to access the full text article or receive discounted pricing for this article.

Prepress Content: The following article is a preprint of a scientific paper that has completed the peer-review process and been accepted for publication within The Energy Journal.

While the International Association for Energy Economics (IAEE) makes every effort to ensure the veracity of the material and the accuracy of the data therein, IAEE is not responsible for the citing of this content until the article is actually printed in a final version of The Energy Journal. For example, preprinted articles are often moved from issue to issue affecting page numbers, and actual volume and issue numbers. Care should be given when citing Energy Journal preprint articles.

Pathways to 100% Electrification in East Africa by 2030

In spite of abundant generation potential, as of 2019 East Africa has an electricity access level of 36%, with over 140 million people without service. Here, a bottom-up geospatial model (OnSSET) is used to estimate least-cost pathways to universal access to electricity by 2030 for different consumption-tier objectives under three regional grid electricity generation mix scenarios. Results suggest median total required investments of $57 and $110 billion for guaranteeing basic (160 and 44 kWh/person/year in urban and rural areas) and moderate - i.e. including potential to enable some productive uses - (423 and 160 kWh/person/year) consumption for newly connected households by 2030, respectively. This corresponds to an average of $5.6 billion/year, and implies median capacity additions of 12.2 GW (59% on-grid, 37% mini-grids, and 4% standalone solutions). At least further $2.7 billion/year in generation capacity are required to satisfy the projected demand growth from already electrified consumers. A grid electricity scenario with 25% lower photovoltaic costs and a higher penetration of renewables reveals to be up to 10% cheaper and 46% less carbon-intensive, while also requiring less up-front investment. To achieve such objectives, investment must be channelled within an enabling policy environment, which we discuss.

Purchase ( $25 )

Keywords: Electricity access, electrification modelling, energy scenarios, utilities policy, East Africa

DOI: 10.5547/01956574.41.3.gfal

References: Reference information is available for this article. Join IAEE, log in, or purchase the article to view reference data.

Published in Volume 41, Number 3 of the bi-monthly journal of the IAEE's Energy Economics Education Foundation.