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When and Under What Conditions Does an Emission Trading 
Scheme Become Cost Effective?

Hongyan Zhang,a Lin Zhang,b and Ning Zhangc

abstract

This paper studies when and under what conditions the actions undertaken by the 
power plants involved in China’s emission trading scheme (ETS) pilot became 
cost effective. Based on unique plant-level panel data and the difference-in-differ-
ences strategy, we identify that an insignificant initial reduction in cost efficiency 
occurred at the announcement stage for power plants in the pilot provinces; how-
ever, the cost efficiency of the pilot plants increased significantly following formal 
policy implementation. Additionally, the by-stage treatment effects differed across 
the pilot provinces due to localized market and non-market variations. Localized 
conditions of higher marketization, stricter policy enforcement, and lower carbon 
dependence enhanced this positive effect. The synthetic control results confirmed 
this variation in the policy effects. The carbon trading pilots resulted in improved 
efficiency in power plants in Shanghai, Guangdong, and Tianjin during the period 
2013–2017, with an associated total cost saving of approximately 29.75 million 
RMB. To enhance the efficacy of the ETS policy, our findings suggest that the 
design of the policy should consider localized external factors.
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1. INTRODUCTION

Due to the challenges of global warming, many countries have proposed carbon neutral 
plans to achieve net zero carbon dioxide emissions by the middle of this century. Finding the path for 
achieving the carbon neutral commitment with the lowest costs has thus become a significant challenge 
around the world. As a market-driven instrument of environmental regulation with high flexibility, 
an emission trading scheme (ETS) is believed to relieve energy and environmental stress in a more 
cost-effective way than other measures (Gallagher et al., 2019). It also has substantial mitigation 
potential with little negative impact on industrial competitiveness (Joltreau and Sommerfeld, 2019). 
Understanding the tradeoffs of economic agents between profitability objective and environmental 
compliance costs after ETS intervention is essential for effective governance. Although several 
attempts have been made to measure the impacts of an ETS on corporate performance (Xiao et al., 
2021; Zhu et al., 2019), much less attention has focused on the cost dynamics attributed to ETS-
induced efficiency changes.
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This paper addresses this by examining China’s ETS pilot policy to quantitatively estimate 
the impact of the ETS requirements on the cost of utilities. As the main contributor to greenhouse 
reduction, the power generation industry in China has been required to make significant changes 
to meet the need for climate mitigation (Duan et al., 2021). China has launched the carbon trading 
market in 2021 and initially covers the power industry, accounting for nearly 40% of China’s carbon 
emissions. China’s carbon trading reforms started in 2011, where the power generation industry 
in the provinces/megacities of Beijing, Tianjin, Shanghai, Chongqing, Hubei, Guangdong, and 
Shenzhen is covered. Power generation enterprises are expected to take the lead in carbon reduction 
efforts. However, thermal power enterprises in China have been facing unprecedented pressure from 
both the supply and demand sides (Liu et al., 2021). Strict emission reduction targets and control 
measures could therefore further aggravate the financial distress being experienced by thermal power 
enterprises. Therefore, the financial problems of thermal power enterprises are of considerable 
concern, and understanding the cost implications of the ETS pilot projects is relevant for addressing 
the financial stress of power plants and helping them to maintain a sustainable electricity supply 
while optimizing the economic costs of the carbon policy in general.

Our research question is twofold: when does the ETS affect the production cost and the 
associated cost efficiency of the thermal power plants, and are these effects different across the pilot 
provinces if the localized conditions vary? Our identification strategy relies on the difference-in-
differences (DID) inference where the power plants in the pilot provinces comprise the treated group 
and the plants in the non-pilot provinces comprise the control group. As the ETS pilot policy took 
two years to implement after its announcement, we could distinguish the policy shock in two stages: 
the announcement and formal implementation. To examine the cost dynamics attributed to the two-
stage policy shocks, both total production cost and cost efficiency are used as proxies to reflect the 
cost dynamics, which allows us to explore whether power plants have made genuine efforts rather 
than just tentatively cut down inputs or production to reduce emissions, because an improvement in 
cost efficiency leads to sustained cost savings.

The results of the DID estimation illustrate that during the announcement stage, the plants 
in the pilot provinces experienced an insignificant increase in total costs relative to the plants in 
the non-pilot provinces. When the pilot policy entered into force after 2013, we found a significant 
reduction in production costs for the treated group, which implies that the ETS announcement 
encouraged them to undertake actions to prepare for the change that will be necessary with the 
incoming carbon emission reduction requirements. Therefore, when the implementation stage 
starts officially, the plants are well prepared to cut emissions more cost-efficiently. We observed 
similar results if total costs were replaced by cost efficiency, as there was an insignificant downward 
adjustment of cost efficiency for the pilot power plants in the announcement stage but a significant 
increase in cost efficiency when the policy was formally implemented.

Several challenges were identified that may affect the validity of our results. First, the 
estimated policy effects may not result from the difference between the treated and control groups. 
We address this by constructing an event-study model to test the parallel trend assumption. Our 
results confirmed the existence of a parallel trend before the shocks. Second, potential endogeneity 
may arise if the ETS pilot provinces were not randomly selected. To address this issue, we employ the 
propensity score matching (PSM) before the DID estimation by constructing a counterfactual control 
group composed of non-pilots that had the same probability of being selected as pilots (Peikes et al., 
2008). Our results survived in the matched DID estimation. Third, there are confounding policies, 
such as the SO2 pilot policy and provincial CO2 emission reduction targets in both the 12th Five-Year 
Plan (FYP) and the 13th Five-Year Plan. Our results remained after introducing a new policy dummy 
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to capture the confounding effects. Fourth, cost efficiency is estimated through stochastic frontier 
specification, where the efficiency is truncated between 0 and 1. We thus apply the Tobit model to 
address the data truncation. All of these checks confirmed the robustness of our results.

We then uncover the condition through which power plants in one pilot province differ from 
those in other pilot provinces. Our results illustrate that the treatment effects of the ETS differed 
across pilot provinces. Drawing on external forces from localized characteristics, both market and 
non-market factors, we find that the degree of marketization, environmental enforcement, and carbon 
dependence are three potential mechanisms that induce the heterogeneity. High-level marketization 
leads to more active and sensitive adaption to grasping business opportunities via fierce market 
competition, strict environmental policy enforcement increases potential regulatory pressure and 
makes firms take affirmative measures to avoid compliance cost, which means that regions with 
stronger market competition and policy enforcement allow firms to deal more proactively with shocks 
from the ETS. However, regions with a higher carbon dependence have difficulties transitioning to 
a low-carbon energy system due to technology lock-in and resistance, which hamper improvements 
in efficiency. Therefore, the effectiveness of the ETS depends not only on the actions of the plants 
covered by the scheme, but also on the external forces being exerted where the plant is located. An 
appropriate design of the ETS policy should consider these external factors to smooth the barriers 
that may mute the efficacy of the policy.

Finally, we quantify the cost savings attributed to the ETS. As the underlying effects of the 
ETS depend on the localized conditions, we estimate the effects by regions. Therefore, we employ 
the synthetic control method proposed by Abadie and Gardeazabal (2003) for regional analysis. 
We find that the cost efficiency in Shanghai, Guangdong, and Tianjin experienced a slight drop in 
2011 when the pilot policy was announced, and then rose gradually relative to the synthetic control 
plants when the formal implementation began in 2013 or 2014, which is in line with our DID results. 
By comparing the regional difference, it can be seen that the ETS significantly improved the cost 
efficiency for plants in Shanghai, Guangdong, and Tianjin. Also, the estimated average annual cost 
efficiency improvement during the period 2013–2017 was 9.34 percentage points in Guangdong, 
9.31 in Shanghai, and 5.76 in Tianjin. The cost saving attributed to ETS-induced efficiencies can be 
calculated by multiplying the efficiency improvement with the total costs of the plants. The results 
show that there was a total cost saving of 29.75 million RMB for plants in Shanghai, Guangdong, and 
Tianjin over the 2013–2017 period, accounting for 29.94 % of the total cost in 2017. However, the 
effects are invisible for thermal power plants in Chongqing and Hubei. The validity of the synthetic 
control results passed the placebo test as suggested by Galiani and Quistorff (2017).

This study makes three main contributions to the existing literature. First, we add to the 
discussion of policy instruments, in particular the debates on the price versus quantity instrument, 
for promoting carbon mitigation and a low-carbon economy. Our results shed light on the cost-
effective advantage of a carbon ETS by proving the significant role of carbon trading in enhancing 
the cost efficiency of thermal power plants. This also provides a promising solution for the survival 
of thermal power plants, which is a pressing problem under the dual goals of power stability and 
carbon reduction. Second, our study enhances our understanding of the policy process on regulating 
carbon mitigation in the policy-making stage framework. We demonstrate firms’ manifestations 
towards different policy stages by providing a comparison between the announcement and formal 
implementation stages. It implies that power plants respond to the announcement of the regulation 
and try to avoid further regulatory compliance costs after the formal implementation. Finally, 
we also add to the literature on the effectiveness of the ETS in different localized circumstances 
by highlighting the conditions that could effectively expand the benefits of the ETS for the cost 
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performance of thermal power enterprises. Our findings therefore provide the theoretical inspiration 
for accelerating the carbon reduction process. Recommendations for policy are also presented to 
assist governments to design an ETS policy scheme that promotes carbon market reforms.

The remainder of the study is organized as follows. Section 2 summarizes the related 
literature. Section 3 presents the theoretical framework, methodology, data sources, and explanation 
of the variables. Section 4 illustrates the main results with robustness checks and discusses the 
conditions under which the effects of the ETS become significant. Section 5 presents a regional 
analysis by synthetic control and quantifies the cost savings associated with efficiency improvements, 
and Section 6 provides the discussion and conclusion.

2. LITERATURE REVIEW

Based on Porter hypothesis, effective design and implementation of environmental 
regulation could stimulate firms’ innovation and enhance their competitive advantage (Porter, 
1991). Weitzman (1974) proposed the important efficiency distinction between equivalent price 
and quantity controls in the regulated market. Economists have long debated this question, and 
previous research has also extended the discussion over the use of these two tools in climate change 
mitigation (Pizer, 2002). The price-based instrument is favored because of the cheaper costs and 
higher incentives to abate (Tyler and Cloete, 2015), while the preferences for the quantity-based 
policy are due to the fewer cost uncertainties, higher efficiency, and the advantage in inducing 
socially optimal technology choice (Krysiak, 2008; Narita and Requate, 2021). Among different 
regulation tools for carbon mitigation, hybrid ETS policies have gained more support as they yield 
sizeable cost reductions (Abrell and Rausch, 2017). As a market-based management mechanism, 
ETS creates strong motivation for firms to internalize the pollution costs through active reforms in a 
more cost-effective way (Gallagher et al., 2019).

ETS policy has been applied in different national contexts and created unique opportunities, 
such as ETS in the EU, Switzerland, the U.S., Canada, New Zealand, Korea and China (Narassimhan 
et al., 2018). Efforts have been devoted to explore the optimal mechanisms for effective carbon 
market, such as setting of appropriate carbon prices, and allocation methods of allowances and 
introducing new instruments (Hintermayer, 2020; Newbery et al., 2019; Peng et al., 2021). 
Although with different cap stringency and allocation practices across nations, existing studies have 
demonstrated the promising co-benefits due to the implementation of ETS (Bayer and Aklin, 2020; 
Calel and Dechezleprêtre, 2016; Teixidó et al., 2019).

China has recently become the trading market with the largest carbon emissions coverage in 
the world. Prior research has illustrated the importance of understanding the specific mechanism of 
China’s ETS, which helps to identify and settle the obstacles to achieving carbon neutral commitment 
(Chen et al., 2021; Liu and Zhang, 2021). Since its official launch of ETS pilot policy, discussion 
on China’s ETS impact and effectiveness has boomed over recent years. A large and growing body 
of research has highlighted the positive environmental effects of China’s ETS, especially on carbon 
reduction (Gao et al., 2020; Xuan et al., 2020). Previous evidences show that the ETS-induced 
carbon mitigation could be achieved via improvement in energy and technical efficiency, lower 
energy consumption, fuel switch, or industrial structure adjustment (Y. Hu et al., 2020; Zhu et al., 
2022). In line with from Porter hypothesis, a growing body of research also stresses the long-run 
positive effect of the ETS on promoting low-carbon innovation (J. Hu et al., 2020; Zhu et al, 2019), 
and green total factor productivity (Li et al., 2022). Renewable energy could also be the beneficiary 
of the ETS, for example, Liu and Zhang (2021) found that ETS has promoted the local development 
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of non-fossil energy, such as the share of hydropower, nuclear, wind power and photovoltaic power. 
Considering regional development, research has tried to provide evidences on ETS’s regional 
economic and social dividend, such as recovering GDP losses (Wu and Gong, 2021), improving 
employment (Yu and Li, 2021), and inducing poverty alleviation (Zhang and Zhang, 2020).

Despite these identified benefits, recent evidence has also indicated a negative impact of 
ETS policy in the short term. ETS could decrease productivity and employment in related industrial 
sub-sectors, and thus fail to avoid a negative shock on competitiveness (Zhang and Duan, 2020). 
Moreover, the administration and compliance costs incurred due to the complex implementation 
process of ETS could become a significant burden for the relevant sectors and firms (Wang et al., 
2018). This cost burden could be extremely higher for the power sector, which may further shift 
more mitigation burden to the industry sector due to the tighter ETS target (Pietzcker et al., 2021). 
Thermal power plants in China are responsible for electricity system safety maintenance and system 
peak adjustment, while they are currently going through a difficult transition phase (Liu et al., 
2021). Considering the dual role in reducing emissions and maintaining power stability, the financial 
performance of power plants under the ETS implementation is worthy of attention.

Although previous research has highlighted firm’s efforts in pursuit of higher efficiency, 
much less attention has been paid to whether the economic loss caused by carbon reduction could be 
covered by efficiency improvement. Moreover, variations in cost performance due to ETS-induced 
efficiency change remains unknown, especially for entities in highly-regulated sectors such as 
power generation industry. Therefore, this study has tried to answer these questions based on power 
plants’ operating data, which allows us to track how the system strives to balance environmental and 
economic demands arising from the implementation of carbon pricing policies.

3. RESEARCH DESIGN

3.1 Theoretical framework

Cost analysis

We formalize a theoretical model for analyzing the cost performance of power plants. We 
start with the function of cost performance below:

( ), ;  C f V Z β=  (1)

Internal factors of a power plant are the key to determining its cost performance. Therefore, V refers 
to a vector of plant-level explanatory variables that could influence the plants’ cost performance. 
Specifically, V considers factors such as output measured by total electricity power generation 
output (output), the price of inputs such as capital ( ep ) and labor ( lp ), the endowment structure 
(klr), and undesirable output of pollution (erso2). Moreover, regional environment could act as 
an important factor for the operation and management of business entities, further affecting their 
cost performance (Alsaleh and Abdul-Rahim, 2018). We thus additionally considering a vector of 
provincial factors related to economy, policy, technology and environment conditions as explanatory 
variables represented by Z. These provincial-level variables include GDP per capita (pergdp), 
industry structure (indratio), foreign direct investment (fdi_r), investment in pollution control 
(indinvest), marketization degree (market), environmental enforcement (penalty), policy uncertainty 
(epustd), technological innovation capacity (totalpat) and carbon dependence (carbongdp).
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Policy analysis

An effective strategy to estimate the ETS impact could be to compare the differences in 
cost performance of pilot plants and non-pilot plants before and after ETS policy came into effect. 
Following Ashenfelter and Card (1985), in a simplified model with two regions (pilot, non-pilot) in 
two time periods (pre, post), the difference can be estimated as,.

( ) ( )ˆ DD post pre post pre
pilot pilot non pilot non pilotC C C Cβ − −= − − −  (2)

where ( )post pre
pilot pilotC C−  evaluate the changes in cost performance before and after ETS policy took 

effect in pilot plants, and ( ) post pre
non pilot non pilotC C− −−

 
refers to the changes in cost performance of non-

pilot plants. The estimator ˆ DDβ  represents the difference between these two changes and can be 
considered as the treatment effect after excluding interference of externalities.

3.2 Empirical method

Difference-in-Differences model

We choose DID model as our identification strategy to compare the cost performance of 
power plants with and without implementation of the ETS pilot policy. DID model helps reduce 
other exogenous interference by calculating the estimator ˆ DDβ  as discussed above (Blackburn et al., 
2020). The quasi-experiment in China’s ETS pilot policy creates two groups of power plants in the 
treated and untreated provinces respectively, which is advantageous for conducting DID analysis. 
Previous research has also shown the validity of DID method in analyzing China’s ETS policy 
(Chen et al., 2021).

The treatment group comprises thermal power plants located in the pilot provinces, and the 
control group comprises plants in the non-pilot provinces. China’s ETS pilot policy was implemented 
in two phases: the pilot provinces were announced in 2011, and formal implementation occurred 
after 2013, allowing us to distinguish between the announcement effect and trading effect (Cui et 
al., 2021). It is assumed that regulated plants began preparing their carbon emission controls after 
the ETS announcement, while essential information such as carbon market quotas and carbon price 
could only be ensured after the official launch of the trading market. Policy recipients may behave 
differently at different policy stages (Ladino et al., 2021), and identifying these differences could 
enhance our understanding of the policy process on regulating carbon mitigation in the policy-
making stage framework. In this study, we thus consider the impact of both the ETS announcement 
and its implementation on the pilot power plants. We use the DID methodology to estimate whether 
there is a significant difference in cost performance between ETS and non-ETS power plants by 
adopting the following equation.

0 1 2it announce implement it i t itY ETS ETS Xβ β β λ η γ ε= + + + + + +  (3)

where i and t refer to power plant and year, respectively. Yit is the dependent variables of total cost and 
cost efficiency, and ETSannounce and ETSimplement are the interactive terms of treated pilot provinces and 
policy intervention year ETSannounce takes the value of one for all plants sitting in the pilot provinces 
after 2011, the year of the ETS announcement, and ETSimplement equals one for pilot provinces after 
the formal implementation year of 2013 for Guangdong, Shanghai, and Tianjin provinces and 2014 
for Chongqing and Hubei provinces. Therefore, 1β  and 2β  measure the ETS announcement effect 
and implementation effect, respectively. Xit is a set of covariates that will influence total cost and cost 
efficiency, including both plant-level and provincial-level characteristics, λ  denotes the estimated 



When and Under What Conditions Does an Emission Trading Scheme Become Cost Effective? / 267

Copyright © 2024 by the IAEE.  All rights reserved.

coefficients for covariates. iη  and tγ  denote plant fixed effect and year fixed effect, respectively, 
controlling for the firm-level and year-level unobservable factors that could affect cost performance 
of power plants, and itε  is the error term.

Event study

The validity of DID estimates is based on the parallel trend assumption that any external 
shocks other than the policy treatment would affect the pilot and non-pilot groups in a similar 
manner (Xiao et al., 2021). Therefore, the main concern in DID analysis is that the observed 
distinction between the power plants in the pilot and control provinces may not be the result of the 
policy treatment. A common diagnostic approach is to look at whether the outcomes in the treatment 
and control groups differ significantly before the policy change (Freyaldenhoven et al., 2019; Fuest 
et al., 2018). Event study allows to test this parallel trend assumption by providing comparison of 
yearly outcome trends in two groups (He et al., 2020). Therefore, we adopt an event study approach 
to detect trends before the ETS policy came into effect, and to present the yearly dynamic effect after 
the ETS announcement and implementation.

We use the following form of event studies:

4

5

,j
it j t i it i t it

j

Y D Treatment Xβ λ η γ ε
=−

= + + + +∑  (4)

where plant and year are indexed by i and t, notation for years is t = 1, 2, …, T0, …T, Yit is the cost 
outcome, including total cost and cost efficiency, Treatmenti indicates whether a power plant sits in 
the pilot province, and j

tD  is a set of time dummies equal to 1 if t = j and 0 otherwise. The coefficient 
estimation of jβ  thus could be conducted separately for each year except the base year of T0, which 
is set to 2010, one year before the ETS pilot announcement. Xit concludes both plant-level and 
provincial-level control variables, identical with the previous DID model, iη  is a set of plant fixed 
effects, tγ  is a set of year fixed effects, and itε  is the error term.

3.3 Data source

Thermal power plant data from 2006 to 2017 were collected from Compilation of 
Statistical Data of China’s Power Industry and Survey of China Electricity Council. For provincial-
level data, economic policy uncertainty (EPU) index data were obtained from Yu et al. (2021). To 
measure the degree of provincial marketization, the provincial market index from the China Market 
Index Database was employed. To calculate carbon intensity, carbon emission data were collected 
from the China Emission Accounts and Datasets (www.ceads.net). The number of environmental 
administrative penalty cases were found in the China Statistical Yearbook on Environment. Other 
provincial level data were calculated from data in the China Statistical Yearbook.

As we focus on the ETS effect on thermal power plants in the pilot provinces, Beijing and 
Shenzhen are excluded because there are no thermal power plant data for these two cities. Therefore, 
in this study, we only consider the cost performance of power plants in five pilot provinces: Shanghai, 
Guangdong, Tianjin, Chongqing, and Hubei. Our final dataset included 92 thermal power plants in 
China for the period 2006–20171, of which 18 power plants were in the treated group of ETS pilot 
provinces. Our dataset contains the observation period of at least three years both before and after 
policy treatment and allows us to carry out the research. Descriptive statistics are shown in Table 1.

1.  Unbalanced panel data due to missing data in 2016–2017 for few power plants.
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Table 1: Descriptive Statistics

Variable Definition Units Obs Mean Std. Dev. Min Max

Explained variable

lntcost Total cost, in log form Yuan 1102 15.5867 1.2402 11.7027 25.7815 
costeff Cost efficiency — 1102 0.8353 0.0958 0.1485 0.9848 

Covariates (Plant level)

lnoutput Annual power output, in log form billion KWH 1102 4.5254 0.5669 3.1781 9.0366 
lnpe Standardized energy price calculated 

by total energy cost/ energy 
consumption, in log form 

Yuan 1102 6.8322 1.3416 5.1218 22.2862 

lnpl Standardized labor price calculated 
by total labor cost/ the amount of 
labor, in log form

Yuan 1102 8.7139 1.1575 5.4438 21.2946 

klr Capital-labor ratio % 1102 0.3842 0.8155 0.0309 7.5000 
Lnerso2 SO2 emission per unit of power 

output, in log form
10,000 tonnes 1102 8.5916 0.4792 3.6442 9.0867 

Covariates (Provincial level)

lpergdp GDP per capital, in log form 100 million yuan 1102 10.5358 0.5698 8.7165 11.8212 
indratio Value-added of the secondary industry 

/GDP
% 1102 0.4127 0.0650 0.2352 0.5738 

fdi_r Foreign direct investment/GDP % 1102 0.0043 0.0078 0.0000 0.1038 
lindinvest Investment in the treatment of 

industrial pollution, in log form
10,000 yuan 1102 12.3952 0.7419 10.5117 14.1637 

epustd Economic policy uncertainty index — 1102 22.5105 15.4700 0.3348 86.2528 
ltotalpat Number of total patent application, in 

log form
Number 1102 10.5919 1.5414 6.5088 13.3500 

market Market index — 1102 8.0675 1.8171 4.1380 11.2330 
lpenalty Number of environmental 

administrative penalty cases, in 
log form

Number 1102 8.0506 1.0741 4.2195 10.5567 

carbongdp Carbon emission per GDP 10,000 tonnes/yuan 1102 2.4588 1.6343 0.5943 8.6053 

3.4 Variable

Two dependent variables

This study mainly utilizes two dependent variables to measure policy effects on cost 
outcome, total cost, and cost efficiency. We collect plant-level data to examine the internal cost 
shift before and after the policy change. Total cost is used to study the direct effect of the policy on 
power plants’ cost changes. However, in response to the increasing carbon emission costs resulting 
from the ETS, plants may conduct proactive measures such as technology improvement, equipment 
upgrading, and process optimization, which result not only in a reduction in total costs but also 
changes in the theoretical cost frontier. To explore this potential effect, cost efficiency is estimated to 
see whether the ETS leads to internal upgrading and improvements in efficiency in thermal power 
plants.

Measurement of cost efficiency of thermal power plants

We calculate cost efficiency for each power plant from 2006 to 2017 to explore whether 
plants’ cost efficiency has been improved through internal upgrading. Cost efficiency is calculated 
by conducting a stochastic frontier analysis, which has been widely used in efficiency research 
(Zhang, 2017; Zhang and Adom, 2018). Following the basic formulation proposed by Aigner et 
al. (1977), we construct the optimal cost frontier, which is specified as the function of input prices, 
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output, and a set of explanatory factors (Filippini and Greene, 2016). Moreover, Mundlak’s (1978) 
specification is adopted with the explanatory variables to control potential, unobserved, individual-
specific heterogeneity (Filippini and Zhang, 2016). After log-transformation of cost function, 
maximum likelihood estimation can be used to determine the parameter values in the cost function, 
sample data can be used to determine the theoretical minimum cost for each power plant, and the 
ratio of theoretical minimum cost to actual total cost can be used to determine cost efficiency. The 
detailed steps in the stochastic frontier analysis are provided in Appendix S3.

Independent variable

ETSannounce and ETSimplement are two dummy variables for measuring plants covered by the 
CO2 emissions trading policy after treatment. Specifically, they are constructed by interacting a pilot 
dummy variable that represents whether the power plant is in the ETS pilot provinces with dummy 
variables of policy announcement year (2011) and implementation year (2013 for Guangdong, 
Shanghai, and Tianjin and 2014 for Chongqing and Hubei), respectively.

Control variables

Plant-level covariates

Electricity output. Electricity power generation is the direct output of power plants and 
reflects the plant’s installed capacity and production efficiency (Tzimas and Georgakaki). Higher 
power output usually requires for more labor and capital inputs, accompanied by higher production, 
operation and maintenance costs.

Input price. The main inputs are energy and labor, which directly affect cost (Filippini and 
Greene, 2016). We include the prices of labor and energy per unit as the input prices for electricity 
production. Specifically, lnpe is total energy cost divided by the amount of energy consumption, and 
lnpl is total labor cost divided by the amount of labor. Moreover, both labor cost and energy cost are 
adjusted by the provincial electricity price to avoid the influence of inflation on cost.

Endowment structure. The capital labor ratio is used to measure endowment structure, 
which refers to the ratio of the quantities of the two main inputs, capital input and labor input, for 
power plants (Chen et al., 2021). In this study, capital refers to the installed power capacity and labor 
is measured by total employees, representing the basic internal resource allocation in electricity 
production.

SO2 emission. SO2 is one of the main pollutants emitted by thermal power plants, and 
is also regarded as an important measure for the level of air pollution. SO2 emission per unit of 
power generation could reflect a plant’s environmental management and cleanliness performance in 
electricity production (McLinden et al., 2016).

Province-level covariates

GDP per capita (lpergdp). GDP per capita reflects the regional economy development 
level. Considering higher demand for electricity in economically developed areas, GDP per capita 
could potentially influence the operations and financial performance of power plants. It is calculated 
by annual provincial GDP divided by total population and constructed in a logarithmic form (Xiao 
et al., 2021).

Industry structure (indratio). Industry structure is assessed by calculating the ratio of 
added value of the secondary industry to GDP. The proportion of secondary industry indicates the 
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development of industry and the regional industrial economic structure (Huang and Du, 2020). It 
could influence the regional power supply and demand situation and may further affect operation 
efficiency of power plants.

Foreign economy (fdi_r). The ratio of foreign direct investment to annual GDP is used to 
measure economic openness (Yang et al., 2021). Since the development of infrastructure such as 
electricity is an important factor attracting foreign investment, the ratio of foreign direct investment 
could be considered as a potential factor affecting the development of power plants. In order to avoid 
the influence of exchange rate fluctuations, we also adjust foreign direct investment by the annual 
exchange rate.

Environmental investment (lindinvest). Environmental investment reflects provincial 
environmental protection and pollution control efforts, and is expected to help reduce environmental 
pollutants from the power sector. It is assessed by the treatment of industrial pollution in log form 
(Xuan et al., 2020).

Policy uncertainty (epustd). We use the economic policy uncertainty index to evaluate the 
policy environment. The uncertainty of policy may affect the policy risks as perceived by power 
plants and thus influence their operational and management activities (Yu et al., 2021).

Innovation capacity (ltotalpat). Regional innovation capacity reflects the development 
and intensity of regional innovation systems, further influencing technical performance of regional 
subjects. Regional innovation capacity is measured by the number of total patent applications in the 
logarithm (Liu and Zhang, 2021).

Marketization (market). Marketization reflects the dynamics of the market and advancement 
of the market economy, which could affect business entities’ capacity of market responsiveness and 
resource allocation. Following Wang et al. (2019), we use the comprehensive market index, which 
considers the relationship between government and market, development of the non-state economy, 
product market, factor market, market intermediary organization, and legal system environment.

Environmental enforcement (lpenalty). A higher intensity of environmental law enforcement 
could also lead to enterprises experiencing higher environmental pressures (Blundell, 2020). 
Environmental enforcement is measured by the number of provincial environmental administrative 
penalty cases in the logarithm.

Carbon dependence (carbongdp). Carbon dependence describes the level of carbon 
pollutants emitted during economic development and could also reflect the difficulty and potential 
burden of reducing carbon dioxide emissions. Carbon dependence is measured by total provincial 
CO2 emission inventory divided by annual GDP (Zhang and Duan, 2020).

4. MAIN RESULTS

4.1 Baseline results

In order to identify the effect of the ETS announcement and implementation, we test three 
aspects: (a) only ETSannounce, (b) only ETSimplement, (c) both ETSannounce and ETSimplement. We first estimate 
the ETS effect on the total costs of thermal power plants. Columns (1) and (2) in Table 2 show that 
the ETS effect on power plant costs is not significant when considering the policy announcement 
and implementation separately. Next, we consider both policy announcement and implementation 
in one equation (Table 2 column 3), and although the results are not significant, there is initially 
an increase in power plant costs after the year of announcement and then a decrease in costs after 
the formal implementation year. The results indicate that the ETS announcement may provide a 
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warning for the pilot power plants that encourages them to begin to prepare for the changes that will 
be necessary with the incoming carbon emission reduction requirements, which means that when 
the implementation stage starts officially, the plants are well prepared to cut emissions with the most 
cost-efficient approach.

There are two possible reasons for the cost reduction. The first reason is that the pilot 
power plants directly compressed spending on capital and labor or cut down their electrical 
production to reduce carbon emissions (Zhang and Duan, 2020). This can be regarded as a short-
term response, as it is not sustainable if the plant is to remain competitive. The second reason is that 
thermal power enterprises improved their cost efficiency by undertaking internal reform measures 
in their operations and management, such as improving resource utilization efficiency, conducting 
technological innovation, optimizing operation processes, and so on. The latter is what we expected 
from the ETS policy as enhancement in cost efficiency will lead to sustained cost savings in the long 
run. Therefore, we evaluate the ETS effect on the cost efficiency of pilot power plants to see whether 
it induces continuous improvement in cost performance.

The results in Table 2 column (6) shows that cost efficiency may initially be reduced 
(not statistically significant) and then be significantly improved due to the ETS implementation. 
Enhancement of cost efficiency implies that the cost reductions are not a temporary situation 
resulting from directly cutting down expenditure or output, but rather that the power plants in the 
pilot provinces have undertaken long-term reform measures, such as upgrading their facilities, 
technologies, or management when confronted by the environmental regulation stress. Our results 
are in line with Cui et al. (2021), who argue that firms’ respond to the ETS by conserving energy, 
switching to low-carbon fuels, reducing labor and capital inputs, and improving firm productivity 
to reduce emissions while maintaining the same level of output. This also sends a good signal 
that the ETS policy has forced thermal power enterprises to carry out internal reforms to reduce 
compliance costs. Moreover, since the pilot power plants are assumed to undertake long-run internal 
reform measures to reduce carbon emission, the remaining reduction in total cost in addition to the 
cost efficiency may also be explained by other benefits from decarbonization efforts. For example, 
power plants could spend less expenditure on sewage charges or environmental taxes, or apply more 

Table 2: Baseline analysis

DV=total cost DV=cost efficiency

(1) (2) (3) (4) (5) (6)

ETSannounce -0.0459 0.0082 -0.0041 -0.0237
(0.0758) (0.0667) (0.0232) (0.0262)

ETSimplement -0.0917 -0.0961* 0.0220 0.0348**
(0.0656) (0.0509) (0.0152) (0.0157)

Plant-level controls Yes Yes Yes Yes Yes Yes
Provincial controls Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes

Constant 1.2818 1.2571 1.2174 1.0632 0.9715 1.0865
(2.9885) (2.8314) (3.0040) (0.9226) (0.8888) (0.9250)

Observations 1102 1102 1102 1102 1102 1102
Within R2 0.9237 0.9239 0.9239 0.0910 0.0927 0.0940

Note: This table reports baseline estimates of ETS effect on total cost and cost efficiency for pilot power plants. Cols.1-3 
report the estimate for total cost and cols.4-6 report the estimate for cost efficiency. Plant-level controls include lnoutput, 
lnpe, lnpl, klr and lnerso2. Provincial controls include lpergdp, indratio, fdi_r, lindinvest, epustd, market, lpenalty, ltotalpat 
and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by plant are reported in parentheses, * 
p<0.1, ** p<0.05, *** p<0.01.
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subsidies for their clean transition, such as optimizing energy structure and enhancing resource 
recycling.

4.2 Test for parallel trend assumption

The most important premise for the DID analysis is to satisfy the parallel trend assumption. 
In other words, to provide evidence that pilot and non-pilot areas had similar trends before the ETS 
policy. Therefore, we adopt the event study method to test the trend before and after the ETS policy. 
The policy effects on total cost and cost efficiency from 2006 to 2017 are shown in Figures 1(a) and 
1(b). The default baseline year is 2010, one year before the ETS policy announcement.

As is shown in Figure 1, the coefficients in the pre-ETS period (before 2011) do not show 
obvious differences between the pilots and non-pilots, which meets the parallel trend assumption 
for the DID analysis. In the post-regulation period (after 2011), the effect of the ETS announcement 
is not significant for the first two years; however, a clear downward trend in the ETS effect on 
total cost appears after 2013, the year of the ETS implementation. This indicates that the ETS has 
reduced the costs of power plants since 2013. A consistently clear upward trend of policy effect on 
cost efficiency can be observed in the same period. Moreover, results from event study analysis also 
address the expectation effect before ETS implementation, as no non-clear differences are found 
between the pilots and non-pilots before 2011.

We also perform other methods to test the parallel trend. We first follow Liu and Zhang 
(2021) and conduct a set of pre-period placebo intervention tests by adding the interaction terms 
of Treatment*Post2007, Treatment*Post2008, Treatment*Post2009 and Treatment*Post2010. If there is no 
significant difference in cost outcome between pilot and non-pilot plants in the above parallel trend 
analysis, the estimated coefficients of the treatment*post are expected to be statistically insignificant. 
Otherwise, there may be some unobservable factors other than the ETS that induce the higher cost 
performance of the pilot plants. The results in Appendix Table 1 show that the coefficients of the 
interaction terms are insignificant for both total cost (columns 1–4) and cost efficiency (columns 
6–9), which addresses this concern.

We also follow the method of J. Hu et al. (2020) to test the parallel trend by using pre-ETS 
period data. A time trend variable (Trend) is constructed to measure time linear trends between the 
pilot and non-pilot provinces, which are assigned values of 1, 2, 3, 4, 5 in 2006, 2007, 2008, 2009, 
2010, respectively. As it is assumed there were no systematic differences in cost trends between the 
pilot and non-pilot areas before the ETS policy announcement, the coefficient of treatment×trend 
is supposed to be statistically insignificant. The results in Appendix Table 1 columns (5) and (10) 
support this assumption, which once again suggests that the parallel trend assumption of the DID 
approach is not violated.

4.3 What makes the policy effect different?

We then explore potential factors that could impact on the effectiveness of the ETS, as the 
actual effects on cost performance of the ETS may vary in practice. Since China ETS policy started 
in pilot provinces and has been recently expanded for nationwide implementation, it is important to 
explore different provincial policy elements and identify key mechanisms that could influence ETS 
policy effectiveness. It allows us to give more specific and practical policy implications for enhancing 
ETS effectiveness. We thus try to uncover the local conditions that could effectively expand ETS 
benefits from the perspective of policy implementation environment (marketization degree), policy 
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enforcement intensity (environmental enforcement) and difficulty in achieving policy goals (carbon 
dependence). Based on the benchmark DID model, we further interact ETSimplement with these three 
provincial characteristics that may act as the impact mechanisms in Table 3.

Table 3: Heterogeneity analysis with different impact mechanisms

DV=Total cost DV=Cost efficiency

Impact Mechanism Marketalization Penalty Carbongdp Marketalization Penalty Carbongdp

(1) (2) (3) (4) (5) (6)
ETSannounce 0.0072 0.0132 0.0121 –0.0235 –0.0248 –0.0248

(0.0673) (0.0668) (0.0671) (0.0263) (0.0262) (0.0263)
ETSimplement 1.4250** 0.5513** –0.3325** –0.1969* –0.1033 0.1027**

(0.6625) (0.2681) (0.1520) (0.1092) (0.0697) (0.0420)
ETSimplement# 
Mechanism

–0.1485** –0.0767** 0.2848* 0.0226* 0.0163** –0.0819*
(0.0658) (0.0325) (0.1618) (0.0115) (0.0082) (0.0428)

Plant-level controls Yes Yes Yes Yes Yes Yes
Provincial controls Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes

Constant 1.5775 1.1334 1.0029 1.0316 1.1044 1.1481
(2.9151) (2.9998) (3.0278) (0.9204) (0.9249) (0.9261)

Observations 1102 1102 1102 1102 1102 1102
Within R2 0.9246 0.9243 0.9242 0.0958 0.0963 0.0968

Note: This table reports heterogeneous estimates of ETS effect on total cost and cost efficiency for pilot power plants with 
different impact mechanisms. Cols.1–3 report the estimate for total cost and cols.4–6 report the estimate for cost efficiency. 
Plant-level controls include lnoutput, lnpe, lnpl, klr and lnerso2. Provincial controls include lpergdp, indratio, fdi_r, lindin-
vest, epustd, market, lpenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered 
by plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01.

A. Impact of Marketization

Policy implementation environment is a crucial influencing factor in determining policy 
effectiveness (Haggerty et al., 2018). As a market-driven instrument, the ETS policy could be 
particularly influenced by the local market economy development (Ren et al., 2020). The external 
market environment exerts pressures on enterprises, which need to adjust their competition 
strategy formulation to adapt to survive and prosper (Collis, 1991, Scherer & Ross, 1990). Market 
competition factors of transaction volume, price, cost, and competitiveness directly affect trading 
activities and market efficiency (Healy et al., 2014). High-level marketization promotes capital flow, 
market element development, and resource allocation (Wu, 2002), and in a high-level marketization 
environment, the more efficient and competitive enterprises are more likely to obtain business 
opportunities and resources via market competition (Gao et al., 2010; Xie, 2017), which could 
lead to more active internal adjustments, more sensitive market adaption, and potentially higher 
production efficiency for enterprises (Cui et al., 2020). Therefore, in order to grasp the competition 
opportunities and winning advantages, power plants are more likely to engage actively in emissions 
trading with higher efficiency under the circumstances of rapid market development and fierce 
competition. When carbon emissions are brought into the market, enterprises respond more quickly 
in the face of market reform resulting from the ETS. Based on this view, advancement of the market 
economy is considered an important catalyst for ETS policy effectiveness.

The marketization index is adopted in this study to reflect market economy development 
according to Wang et al. (2019). In Table 3 columns (1) and (4), we aim to estimate whether 
heterogeneity in provincial market development could influence ETS effectiveness. The significantly 
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positive coefficients of ETSimplement*market in both the cost and cost efficiency equations show that the 
development of provincial marketization contributes to the cost savings and efficiency enhancement 
induced by the ETS pilot policy. The results are consistent with Chen et al. (2021) and J. Hu et al. 
(2020), who found that the marketization level enhances the positive effect of the carbon ETS on 
entities’ efficiency or innovation performance.

B. Impact of environmental enforcement

Local environmental enforcement regime could reflect the orientation of environmental 
official, the institutional capacity of enforcement teams, and the external political support (Francesch-
Huidobro et al., 2012). The intensity of environmental enforcement is assumed to be a key factor in 
the effective implementation of a carbon emission trading market. For policy recipients, as “rational” 
economic entities, the core organizational goal is profit maximization (Schoemaker, 1993). The 
level of environmental supervision and enforcement will impact on an enterprise’s management 
decisions about how they will adapt to the policy requirements and enforcement (Heyes and Kapur, 
2009; Pashigian, 1982). In areas with stricter environmental regulations, enterprises will be vigilant 
about policy requirements and rules and implement adaptive strategies to avoid penalties (Sun et al., 
2019). Thus, the greater the intensity of environmental law enforcement, the higher the costs faced 
by enterprises for non-compliance, and the more likely enterprises will follow the ETS regulations 
to avoid violation penalties (Blundell, 2020). For policy enforcers, the operation of the ETS requires 
a high level of execution, such as collection and management of emission information, supervision 
of market transactions, punishment of non-compliance with trading rules, and management of 
levies on excessive pollution. A high intensity of policy enforcement provides necessary support 
and ensures orderly operated market transaction for the implementation of emission trading (J. Hu 
et al., 2020).

To test whether environmental law enforcement affects ETS policy effectiveness, we use 
the interaction between ETSimplement and the number of environmental administrative penalty cases. 
The results from Table 3 columns (2) and (5) show that the ETS has a greater promoting effect on 
cost reduction and cost efficiency improvement in regions with higher policy enforcement intensity, 
which is consistent with J. Hu et al. (2020). It implies that plants have taken active measures to 
enhance cost efficiency and relieve the cost burdens of adapting to the policy regulation pressure. 
Therefore, policy enforcement is essential for ensuring ETS effectiveness, as it affects the behaviors 
and strategies of both ETS market managers and participants. Support from local governments, 
especially those responsible for environmental law enforcement, could be an important contributing 
factor in the effective implementation of China’s ETS.

C. Impact of carbon dependence

Due to different local resource endowments and economic development process, the 
difficulty of achieving environmental policy objectives could vary substantially across regions. 
Regional dependence on high carbon-emitting industries is a major obstacle to achieving carbon 
reduction targets (Janipour et al., 2020). Arthur (1989) first put forward the theory of path dependence 
in the process of technological evolution, which explains that the advantage of scale return for early 
entrants makes it difficult for the latecomer technology to gain benefits. Regional economies could 
therefore become locked into development paths that lose dynamism (Martin and Sunley, 2006). 
Similarly, a carbon-based energy system that benefits from long-term incremental returns may also 
create a lock-in effect that hampers the transition to low-carbon alternatives (Erickson et al., 2015). 
Participants who are benefitting from the existing fossil fuel-intensive system will try to maintain 
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it, which further reinforces the lock-in of existing technology systems and impedes low-carbon 
innovation (Liu et al., 2017). Therefore, the primary carbon emission intensity of different regions 
could affect ETS effectiveness on plant cost performance. Regions with higher carbon dependence 
may have higher resistance to low-carbon energy systems and technological innovation, resulting in 
reduced ETS effectiveness on the cost efficiency improvement of pilot plants.

We adopt the indicator of carbon emissions per GDP to measure carbon emission intensity. 
In line with our hypothesis, it is found that carbon emission intensity imposes a significant negative 
ETS impact that leads to higher costs and lower cost efficiency of power plants (Table 3, columns 
(3) and (6)). This finding supports the conjecture that provinces with a higher economic dependence 
on carbon-intensive industries experience more pressure when preparing for the ETS, as they have 
more difficulty reducing emissions due to the significantly higher costs of introducing and reforming 
low-carbon technologies and facilities. A relatively more tolerant attitude towards pollution due 
to high economic dependence on polluting entities could be another reason, as there may be less 
motivation for radical transformation. On the other hand, those with a lower emission intensity can 
respond more flexibly to the ETS reform and achieve more cost savings. A potential problem is that 
current difficulties with emissions reduction may depend more on emission status in the previous 
period. Therefore, in our unreported results, we also test whether a one-year lag of carbon intensity 
affects current cost performance. The results remain consistent and shows robustness of the negative 
ETS effect on both cost savings and cost efficiency.

Therefore, we conclude that there are four potential factors that will influence ETS 
effectiveness in improving power plants’ cost performance. A higher degree of marketization, 
stricter environmental enforcement, and lower carbon dependence provide a favorable environment 
for thermal power plants to achieve more cost savings and higher cost efficiency when facing the 
emissions reduction pressure required by the ETS policy.

4.4 Robustness check

A. PSM-DID analysis

A significant challenge is that the ETS pilot provinces were not randomly selected, which 
can result in potential endogeneity issues and violate DID assumption. Although we have controlled 
provincial economic, policy, technology and environment factors in the model, the DID model and 
event study design that we adopted are still subject to potential estimation bias from selection. To 
relieve the non-random selection bias of the ETS treatment, the propensity score matching method 
and difference-in-difference model (PSM-DID) are integrated to examine the robustness of the 
baseline DID results. PSM is first performed to match the pilot and non-pilot groups. The basic idea 
is to create a counterfactual control group composed of non-pilots that had the same probability 
of being selected as pilots (Peikes et al., 2008). First, a logistic regression is applied to estimate 
propensity scores, and the radius matching procedure within calipers of 0.05 is conducted to obtain 
control groups. Second, the DID model is applied using the treatment group and new counterfactual 
control group after matching, which dropped those unmatched observations with the PSM procedure.

The PSM-DID results in Appendix Table 2 show that both the baseline and heterogeneous 
analyses are robust after dropping the unmatched samples. Therefore, the matching process between 
the treated and control groups does not significantly affect our main outcomes. Also, the balancing 
test of the PSM procedure is shown in Appendix Table 3, indicating no significant differences 
between covariates in the treated and untreated group after matching. All standardized biases are 
less than 18%, which suggests a high matching quality of data pairs.
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B. Excluding potential effect of confounding factors

The DID approach also assumes no other confounding factors that might affect the 
outcome variable simultaneously with the policy treatment. Therefore, we control other factors with 
potential impact on plants’ cost efficiency over the same period. First, as the SO2 pilot scheme 
was implemented in 2007, which was within our research period, we construct a dummy variable 
SO2ETS to control for its confounding impact on power plants. SO2ETS is equal to 1 if the plant sits 
in a pilot province for the SO2 ETS, which included Jiangsu, Zhejiang, Tianjin, Hubei, Hunan, Inner 
Mongolia, Shanxi, Chongqing, Shaanxi, Hebei, and Henan. Even with the lower significance of the 
carbon mitigation impact mechanism, the core results when considering the SO2 ETS program are 
still robust (Appendix Table 4).

Second, China’s State Council has set CO2 emission reduction targets for each province 
in both the 12th FYP (2011–2015) and the 13th FYP (2016–2020) for controlling greenhouse gas 
emissions. Provincial emission control targets may further affect the performance of power plants 
in different provinces. Therefore, we additionally include the variable Co2Target in our model to 
control for the impact of this work plan, which is constructed based on the provincial target rate for 
reducing CO2 emissions per unit of GDP2. Our main results when considering the provincial CO2 
emission reduction targets are consistent (Appendix Table 5).

C. Adopting different model specifications

In this paper, the explained variable costeff refers to cost efficiency, which is censored 
data ranging from 0 to 1. A potential concern lies in that an ordinary regression model may omit 
the problem of censored data; therefore, we use the Tobit model to test the robustness of the cost 
efficiency results in Appendix Table 6 columns (1)–(4). Moreover, since we have control of both 
the plant-level and provincial-level covariates, a possible problem is that costeff is estimated at 
plant level, and the plant-level characteristics may cause a multicollinearity problem in the DID 
analysis. Therefore, we drop the plant-level covariates and use provincial-level controls to estimate 
the treatment effect on cost efficiency. The results are shown Appendix Table 6 columns (5)–(8). The 
results in Appendix Table 6 support the robustness of our analysis.

5. FURTHER ANALYSES OF FIVE PILOT PROVINCES

5.1 Synthetic control method

In the above analysis, we discussed the treatment effect of the ETS on all pilot provinces. In 
this section, we aim to further specify the ETS effect on cost efficiency in different pilot provinces. 
We focus on the provincial effect of cost efficiency as it is more reflective of the internal upgrading 
activities undertaken by the enterprises. It is considered more important that thermal power 
enterprises achieve consistent cost savings.

To undertake this provincial analysis, we employ the synthetic control method proposed 
by Abadie and Gardeazabal (2003). This method has several advantages. First, the SCM method 
helps to address selection bias by constructing a counterfactual unit for each treated unit. 
Targeted evaluation on different treated units is thus allowed to evaluate heterogeneity in policy 
implementation. Second, the optimal weight used to construct the control counterpart is determined 

2.  As there is no specific provincial-level target for CO2 emission reduction in the 11th Five-Year Plan (2006–2010), 
Co2Target before 2011 is set to be 0.
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by the data and their matching results, which avoids the bias from subjective choice. Third, as we 
control for plant-level covariates when conducting the DID analysis, the SCM helps to address the 
potential multicollinearity problem in the traditional DID model. Therefore, we further utilize the 
SCM method to measure the treatment effect of the ETS on cost efficiency in different provinces.

Following Abadie et al. (2010), we presume that there are J+1 units, with the first unit being 
treated and the remaining units making up the control pool. 1 ˆ

tα  is the estimator of the intervention 
effect for treated unit at time t. 1

I
ty  is the observed outcome for the treated unit in period t. Supposing 

that T is the number of whole time periods and 0T  is the pretreatment period, for 0t T> , the treatment 
effect can be given as follows:

1 1 1
ˆ ˆI N

t t ty yα = −  (5)

where 1
N
ty  is the supposed counterfactual outcome if the treated unit was not treated. This synthetic 

counterfactual of a treated unit is constructed by combining the other control units linearly in the 
SCM method. For 0t T> , 1

N
ty  can be estimated with:

1
*

1
2

ˆ
J

N
t j jt

j

y w y
+

=

= ∑  (6)

where W* is an optimal vector of weights to minimize the distance between the preintervention 
covariates for the treated unit and control units. If 1X  is a vector of pretreatment covariates for the 
treated unit and 0X  is a vector of the same covariates for the untreated units, the discrepancy between 

1X  and 0X W  can also be expressed as:

( ) ( )1 0 1 0 1 0VX X W X X W V X X W′− = − −   (7)

where V can be considered to be some symmetric and positive semidefinite matrix to get the 
minimum root mean squared prediction error (RMSPE). In other words, it helps the synthetic control 
unit to approximate the outcome trajectory of the treated unit during the pretreatment stages, thus 
minimizing the preintervention discrepancy between the treated and control units.

5.2 Provincial treatment effect

Figure 2 provides the cost efficiency between the treated power plants and synthetic control 
plants in five pilot provinces, showing that the trend for the ETS treatment effect is similar in pilot 
provinces such as Guangdong, Shanghai and Tianjin. Initially it shows a slight drop in 2011 and then 
it gradually increases and surpasses the cost efficiency of synthetic control plants. The positive effect 
is enlarged after ETS implementation, especially over the period of 2013–2015, and contracted 
between 2016 and 2017. The different outcome between announcement and implementation stage 
is consistent with the previous baseline analyses, which showed that the average treatment effect 
is initially negative after the ETS announcement and then reverses to be significantly positive 
following the implementation of the ETS in 2013, though the former effect is not significant. 
Therefore, these analyses again illustrate that the announcement of the ETS leads to preparation 
for emissions reduction in the pilot power plants, which results in additional costs and temporary 
loss of cost efficiency. The reversal of the trend occurred after the pilot plants had adapted to the 
policy intervention by collecting enough information and upgrading their devices and technology, 
eventually benefitting from the implementation of the ETS policy. Moreover, the reduction of positive 
treatment effect in 2016 may due to China’s announcement to establish a national carbon emissions 



When and Under What Conditions Does an Emission Trading Scheme Become Cost Effective? / 279

Copyright © 2024 by the IAEE.  All rights reserved.

F
ig

ur
e 

2:
 T

re
at

m
en

t e
ff

ec
ts

 o
f c

ar
bo

n 
em

is
si

on
 tr

ad
in

g 
po

lic
y 

fr
om

 s
yn

th
et

ic
 c

on
tr

ol
 m

et
ho

d

N
ot

e:
 F

ig
ur

e 
2 

sh
ow

s 
th

e 
ch

an
ge

 o
f 

co
st

 e
ffi

ci
en

cy
 d

ue
 to

 th
e 

E
T

S 
po

lic
y 

on
 e

ac
h 

tr
ea

te
d 

pr
ov

in
ce

 a
nd

 it
s 

sy
nt

he
tic

 c
on

tr
ol

 u
ni

t u
si

ng
 th

e 
sy

nt
he

tic
 c

on
tr

ol
 m

et
ho

d.



280 / The Energy Journal

All rights reserved. Copyright © 2024 by the IAEE.

trading market, which is accompanied by the refinement of relevant market rules and regulations. 
The new reaction and adjustment of the power plants may affect the continuous improvement of 
cost efficiency. The rebound of the positive treatment effect in 2017 may indicate that the ETS could 
provide an incentive for long-term cost efficiency growth.

Our results imply that the cost efficiency of pilot plants could be improved due to active 
internal reform measures, pilot plants without the ETS intervention are thus assumed to be have 
less incentive for upgrading technology and optimizing operation. The drop of the fitted synthetic 
control curve in Figure 2 provides some evidences that the cost efficiency of synthetic control 
units decreases compared with treated plants. This may result from two potential reasons. First, 
considering the increasing cost burden of power plants in China, the reduction of efficiency could 
be due to the lack of active efforts for improving production and operational capacity (Zhang and 
Adom, 2018). Second, with the development of technology especially in pilot power plants, the 
optimal cost efficiency is supposed to be higher and lead to the lower cost efficiency of power plants 
in non-pilot provinces.

The ETS treatment effect of each separate pilot province is then compared to determine the 
significance of the treatment effect. We undertook the placebo test to test the validity of the synthetic 
control analysis. Appendix Table 7 shows the p-values that denote the proportion of placebo effects 
from the control units that have posttreatment RMSPE at least as great as the treated unit (Galiani 
and Quistorff, 2017). The comparison of the significance of the provincial treatment effect reveals 
that the ETS significantly improves cost efficiency in Shanghai, Guangdong, and Tianjin; however, 
there was no positive effect on cost performance of thermal power plants in Chongqing and Hubei.

There are several potential reasons for the difference. According to information on carbon 
exchanges in the pilot provinces, the carbon market in Chongqing is the least active, with lower 
trading volume and poorer transaction transparency. The allowance allocation in Chongqing is 
based on firms’ self-declaration and allows for ex-post adjustment, resulting in lower compliance 
pressure. The compliance rate of the Chongqing carbon market in 2013–2014 was only 70%, which 
is much lower than the other pilots and supports the low ETS effectiveness in Chongqing. Given the 
better trading volume and liquidity in the Hubei carbon market, the insignificant positive effect in 
Hubei could be partially explained by our mechanism analysis. For example, for carbon dependence, 
Hubei is the only pilot province in central China and its heavy industrial structure means it has the 
highest carbon intensity among all pilots (Cao et al., 2021), which may increase its cost burden 
when adapting to the carbon trading reform requirements and cause a low ETS effectiveness on cost 
performance.

One main assumption of SCM analysis is that the intervention has no effect on the cost 
performance before the treatment period, which has been discussed in the event study analysis. 
Another assumption is that the cost performance of the non-pilot units is not affected by the ETS 
pilot policy intervention in the pilot provinces, known as the assumption of no interference between 
units (Abadie et al., 2010). In the context of our analysis, several potential ways may result in the 
violation of this “no interference” assumption. One concern is that the implementation of ETS policy 
may raise the awareness of carbon reduction in non-pilot provinces and induce similar responsive 
measures, contaminating the donor pool. Since the national unified carbon emissions trading market 
was officially announced at the end of 2017, it is expected that the preparation of national carbon 
emission trading would not severely affect the untreated power plants during the research period. 
However, previous findings showed the exist spillover effects of ETS on improving the green total 
factor productivity and reducing carbon emission in non-pilot cities and provinces (Li et al., 2022; 
Yang et al., 2022; Zhu et al., 2022). Although there is no enough evidence indicating its influence on 
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plant-level financial performance in non-pilot provinces, it is still possible that these factors could 
contaminate the donor pool and further lead to underestimation of the cost efficiency improvement 
for treated power plants. If this is what actually happens, our study provides a relatively conservative 
estimate of the ETS policy effect. Another concern is that the power enterprises may choose the 
strategy to transfer some high-polluting operation from plants in pilot provinces to those in non-
pilot provinces. This is not a serious concern as the power supply and demand situation within each 
province were quite different, and the power plants need to strictly obey the local grid dispatch 
regulations. Moreover, China’s inter-provincial power trading was not mature during our research 
period, which makes it less possible for the trading or other similar coping strategies between power 
plants. Therefore, it is expected that this concern would not seriously affect the results.

To additionally figure out the question that whether our SCM estimations could be driven 
by chance, we then conduct placebo tests by considering cases that if we had treated other non-
pilot plants randomly instead of plants in pilot provinces. In the calculations undertaken in the 
analyses above, we consider the characteristics of each separate power plant in the treated provinces. 
Moreover, as a robustness check, we regard the power plants in the treated provinces as one unit; 
specifically, we calculate the mean value of all variables and create a plant that represents the mean 
status of all power plants in each treated province. We then adopt the SCM again and obtain the 
placebo test results. The results are similar, in that there is significantly improved cost efficiency in 
Guangdong, Shanghai, and Tianjin but not in Chongqing and Hubei (Appendix Figure 1).

5.3 Cost saving

Based on the results of the synthetic control method, Figure 3(a) shows the comparison 
of the ETS treatment effect between different pilot provinces from 2011 to 2017. Specifically, we 
calculate the average treatment effect of the ETS on power plants’ cost efficiency in each pilot 
province from 2013 to 2017, as the treatment effect is statistically significant after 2013. The 
estimated average annual cost efficiency improvement is 9.34 percentage points in Guangdong, 
9.31 in Shanghai, and 5.76 in Tianjin. The cost saving from cost efficiency improvements can be 
speculated using the following equation:

       Cost savings Cost efficiencyimprovement Total cost= ×

The cost savings calculated using the above equation are shown in Figure 3(b). As the treatment 
effect of Hubei is not statistically significant, the cost savings of Chongqing and Hubei are shown 
in grey in Figure 3(b). The cost saving for thermal power plants in each pilot is different when both 
total cost and cost efficiency improvement are considered. The carbon emission trading achieves 
annual cost savings of about 0.33 million RMB for each thermal power plant in Guangdong, which 
accounts for 9.11% of the total cost, 0.52 million RMB per plant (8.90% of total cost) annually in 
Shanghai, and 0.28 million RMB per plant (5.56% of total cost) annually in Tianjin. In sum, the 
ETS-induced cost efficiency improvement of power plants in these three pilot provinces saved a total 
of around 5.95 million RMB per year. Therefore, the total cost savings in Shanghai, Guangdong, and 
Tianjian during the five-year period 2013–2017 was approximately 29.75 million RMB, accounting 
for 29.94% of the total cost in 2017.

It should be noted that the cost saving discussed above is only the direct economic cost 
saving based on the plant-level analysis of cost efficiency. Other benefits, such as environmental 
and health benefits of emission reductions, and employment benefits may also be significant. For 
example, Guo et al., (2020) estimated that China’s ETS has led to the reduction in production-based 
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emissions by 6.5 Mt CO2 and consumption-based emissions by 4.6 Mt CO2 over the post-treatment 
period of 2011–2015. Assuming that one ton of CO2 reduction could generate $147 in the national 
average health co-benefits (Wang et al., 2021), the health co-benefits with ETS implementation 
could be estimated as approximately $1.6 billion. Moreover, Zhang and Zhang et al. (2020) found 
the implementation of China’s ETS in 2013 has increased annual rural residents’ income by about 
752.6 RMB and increased the ratio of rural employment to total employment by 2.35% over the 
period of 2014–2017, which accounts for 9.5% of the income of rural residents and 7.11% of rural 
employment. Therefore, the actual cost saving of ETS including those from indirect benefits could 
be much larger than our estimates.

6. DISCUSSION AND CONCLUSION

This study examined the effects of China’s carbon emissions trading policy on the production 
costs of thermal power plants. We conducted a DID analysis between plants in pilot and non-pilot 
provinces after the ETS announcement and also after the ETS formal implementation. The results 
showed that China’s ETS policy seemed to initially marginally reduce power plants’ cost efficiency 
following the announcement in 2011, and then significantly improve the cost efficiency after the 
implementation in 2013. We also discussed under what conditions the ETS pilot was effective in 
saving power plants’ costs. It was found that a higher degree of marketization, stricter environmental 
policy enforcement, and lower carbon dependence help to increase the effectiveness of the ETS on 
cost performance. Provincial results from synthetic control analysis also show that cost efficiency 
was enhanced for power plants in Shanghai, Guangdong, and Tianjin, leading to significant cost 
savings for those pilot power plants. However, this positive effect was not found for pilot plants in 
Chongqing and Hubei provinces.

Based on our analysis, there are several implications for promoting carbon market reforms. 
First, carbon emission trading is a promising instrument for use in achieving the carbon neural 
commitment in a cost-effective way. As China’s carbon ETS for the power sector has been expanded 
nationwide since 2021, the future national market is expected to witness even larger gains due to the 
enhanced cost efficiency of participants. The specific ETS implementation, such as the quotas and 
how they are allocated, need to be carefully considered, as participants’ enthusiasm for emissions 
reduction should be encouraged to the greatest extent.

Second, different regional conditions need to be considered in the governance of the 
carbon emission trading market. Specific measures are needed to promote regional marketization 
development, conduct strict environmental enforcement, and develop low-carbon industries to 
reduce carbon dependency, as they support the carbon trading system. Meanwhile, considering the 
significant role of these different localized factors, it is suggested to pay more attention on the 
effectiveness of the national ETS in the western and central region of China where the economy 
is not well developed but carbon emissions are heavy. It is necessary to consider their cost burden 
and introduce more incentive tools and risk management tools that could encourage polluters to 
participate and help them to create a virtuous cycle. In turn, participants’ positive carbon reduction 
actions could accelerate the transformation of the whole industry structure.

Third, for entities involved in the carbon ETS, our study sends a positive signal that active 
participation in the trading market is beneficial for their long-term sustainability. Specifically, ETS 
requirements not only help to keep carbon emissions within necessary limits and address corporate 
social responsibility, but also lead to potential higher cost efficiencies through application of efficient 
and clean technology, equipment, or procedures. Therefore, early and active participation in the 



284 / The Energy Journal

All rights reserved. Copyright © 2024 by the IAEE.

carbon trading market is a key measure for firms to achieve a balance between commercial value 
and social value.

This research is limited in several aspects and presents several directions for future 
research. First, we estimated the plant-level cost performance based on observed total cost and 
calculated cost efficiency considering data availability. More detailed and precise measurement of 
the internal processes for cost efficiency change in pilot plants can be explored. Second, although we 
have explored the potential cost strategies of power plants, firm-level response strategies of power 
enterprises have not been discussed. Future studies could combine the specific cost strategy of the 
power enterprises under the carbon ETS policy to better identify their response actions. Third, this 
study only discussed the cost savings of ETS implementation before 2017 due to the lack of more 
detailed plant-level data. With the development of China’s ETS, the change in carbon price and 
carbon quotas could affect the cost performance of power plants. It is also worth identifying whether 
cost efficiency improvements could be sustainable in the long term, and how long this benefit will 
last in offsetting part of the carbon compliance cost.
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APPENDIX S1: TABLES

Appendix Table 1: Parallel trend test
DV=Total cost DV=Cost efficiency

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment * Post2007 0.0629 –0.0261
(0.0629) (0.0236)

Treatment * Post2008 0.0381 –0.0222
(0.0652) (0.0254)

Treatment * Post2009 0.0124 –0.0215
(0.0740) (0.0288)

Treatment * Post2010 0.0013 –0.0249
(0.0834) (0.0290)

Treatment *Pretrend 0.0055 –0.0037
(0.0226) (0.0108)

Constant 0.8740 0.8222 0.9138 0.9777 7.3490** 1.0830 1.1319 1.1626 1.2070 –0.4438
(2.8835) (2.9538) (3.0089) (3.0631) (3.0079) (0.8909) (0.9113) (0.9318) (0.9444) (1.4819)

Observations 1102 1102 1102 1102 460 1102 1102 1102 1102 460
Within R2 0.9236 0.9236 0.9236 0.9236 0.8410 0.0920 0.0921 0.0924 0.0930 0.3238

Note: This table reports placebo test of different policy year and parallel trend test on total cost and cost efficiency for pilot power plants. 
Cols.1–4 and cols. 6–9 report placebo tests for total cost and cost efficiency, respectively. Columns 5 and 10 report the trend of total cost and 
cost efficiency during the pretreatment period, respectively. Plant-level controls include lnoutput, lnpe, lnpl, klr and lnerso2. Provincial con-
trols include lpergdp, indratio, fdi_r, lindinvest, epustd, market, lpenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled. 
Standard errors clustered by plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01.

Appendix Table 2: Robustness analysis with PSM-DID method
DV=Total cost DV=Cost efficiency

Baseline Marketalization Penalty Carbongdp Baseline Marketalization Penalty Carbongdp
Impact Mechanism (1) (2) (3) (4) (5) (6) (7) (8)

ETSannounce 0.1146 0.1069 0.1259* 0.1390* –0.0570** –0.0561* –0.0596** –0.0553*
(0.0709) (0.0695) (0.0720) (0.0735) (0.0285) (0.0282) (0.0285) (0.0305)

ETSimplement –0.1450** 1.6082** 0.5908** –0.3351** 0.0406** –0.1713* –0.1265* 0.1235***
(0.0690) (0.6820) (0.2855) (0.1552) (0.0198) (0.0973) (0.0738) (0.0460)

ETSimplement# 
Mechanism

–0.1702** –0.0877** 0.2500 0.0206* 0.0199** –0.0990**
(0.0687) (0.0343) (0.1578) (0.0111) (0.0086) (0.0443)

Plant-level controls Yes Yes Yes Yes Yes Yes Yes Yes
Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes

Constant –3.4167 –3.3104 –3.5079 –3.2194 1.8153** 1.8025** 1.8360** 1.7814**
(2.7139) (2.6308) (2.7048) (2.5842) (0.7849) (0.7725) (0.7903) (0.7851)

Observations 718 718 718 718 718 718 718 718
Within R2 0.9294 0.9307 0.9302 0.9310 0.1573 0.1599 0.1626 0.1632

Note: This table reports robust estimates of ETS effect on total cost and cost efficiency for pilot power plants by adopting the PSM-DID 
method. The pretreatment value from 2006 to 2010 of lpergdp, indratio, fdi_r, lindinvest and carbongdp are selected as covariates in the 
propensity matching procedure. Cols.1–4 report the estimate for total cost and cols.5–8 report the estimate for cost efficiency. Plant-level 
controls include lnoutput, lnpe, lnpl, klr and lnerso2. Provincial controls include market, lpenalty, ltotalpat and epustd. Year and plant fixed 
effects are controlled. Standard errors clustered by plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table 3: Propensity score matching results

Covariates Treated Control %bias t p>t

Before matching

lpergdp 10.621 10.030 130.50 11.18 0.000
indratio 0.430 0.444 –26.00 –1.93 0.055
fdi_r 0.002 0.001 72.70 6.37 0.000
lindinvest 12.068 12.171 –15.20 –1.28 0.202
carbongdp 1.523 3.383 –142.30 –9.84 0.002

After matching

lpergdp 10.388 10.396 –1.80 –0.11 0.915
indratio 0.441 0.440 2.30 0.16 0.874
fdi_r 0.002 0.002 –1.70 –0.12 0.904
lindinvest 12.215 12.094 18.00 1.13 0.261
carbongdp 1.717 1.711 0.50 0.06 0.948

Appendix Table 4: �Robustness analysis with considering effect of SO2 emission trading 
scheme

DV=Total cost DV=Cost efficiency

Baseline Marketalization Penalty Carbongdp Baseline Marketalization Penalty Carbongdp
Impact Mechanism (1) (2) (3) (4) (5) (6) (7) (8)

ETSannounce 0.0082 0.0072 0.0132 0.0121 –0.0237 –0.0235 –0.0248 –0.0248
(0.0697) (0.0703) (0.0698) (0.0701) (0.0274) (0.0275) (0.0274) (0.0275)

ETSimplement –0.0961* 1.4250** 0.5513* –0.3325** 0.0348** –0.1969* –0.1033 0.1027**
(0.0532) (0.6926) (0.2803) (0.1589) (0.0164) (0.1142) (0.0728) (0.0439)

ETSimplement# 
Mechanism

–0.1485** –0.0767** 0.2848* 0.0226* 0.0163* –0.0819*
(0.0688) (0.0340) (0.1691) (0.0120) (0.0086) (0.0448)

SO2ETS –0.6181*** –0.6027*** –0.6209*** –0.6559*** 0.0625 0.0602 0.0631 0.0734
(0.2237) (0.2181) (0.2223) (0.2260) (0.0945) (0.0939) (0.0944) (0.0953)

Plant-level controls Yes Yes Yes Yes Yes Yes Yes Yes
Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes

Constant 1.6678 2.0026 1.5645 1.4471 1.0753 1.0243 1.0973 1.1387
(2.9878) (2.9028) (2.9890) (3.0162) (0.9297) (0.9250) (0.9297) (0.9310)

Observations 1102 1102 1102 1102 1102 1102 1102 1102
Within R2 0.9640 0.9643 0.9642 0.9641 0.3210 0.3223 0.3227 0.3231

Note: This table reports robust estimates of ETS effect on total cost and cost efficiency for pilot power plants after considering effect of 
SO2 emission trading scheme. Cols.1–4 report estimates for total cost and Cols.5–8 report estimates for cost efficiency. Plant-level controls 
include lnoutput, lnpe, lnpl, klr and lnerso2. Provincial controls include lpergdp, indratio, fdi_r, lindinvest, epustd, market, lpenalty, ltotalpat 
and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by plant are reported in parentheses, * p<0.1, ** p<0.05, 
*** p<0.01..
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Appendix Table 5: �Robustness analysis with considering effect of provincial CO2 emission 
reduction targets

DV=Total cost DV=Cost efficiency

Baseline Marketalization Penalty Carbongdp Baseline Marketalization Penalty Carbongdp
Impact Mechanism (1) (2) (3) (4) (5) (6) (7) (8)

ETSannounce 0.0897 0.0888 0.0930 0.0933 –0.0414 –0.0412 –0.0421 –0.0424
(0.0638) (0.0639) (0.0643) (0.0644) (0.0273) (0.0274) (0.0274) (0.0275)

ETSimplement –0.0992* 1.4259** 0.4873* –0.3287** 0.0354** –0.1971* –0.0894 0.1019**
(0.0536) (0.6812) (0.2517) (0.1459) (0.0154) (0.1099) (0.0696) (0.0405)

ETSimplement# 
Mechanism

–0.1489** –0.0695** 0.2765* 0.0227* 0.0148* –0.0801*
(0.0675) (0.0304) (0.1534) (0.0116) (0.0081) (0.0414)

CO2reduce –0.0876*** –0.0876*** –0.0862*** –0.0873*** 0.0190** 0.0190** 0.0187** 0.0189**
(0.0299) (0.0299) (0.0299) (0.0299) (0.0075) (0.0075) (0.0075) (0.0075)

Plant-level controls Yes Yes Yes Yes Yes Yes Yes Yes
Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes

Constant 0.9028 1.2637 0.8316 0.6956 1.1547 1.0997 1.1699 1.2147
(2.8960) (2.8189) (2.8955) (2.9180) (0.9157) (0.9124) (0.9161) (0.9167)

Observations 1102 1102 1102 1102 1102 1102 1102 1102
Within R2 0.9265 0.9272 0.9269 0.9268 0.1071 0.1088 0.1089 0.1097

Note: This table reports robust estimates of ETS effect on total cost and cost efficiency for pilot power plants after considering effect of 
provincial CO2 emission reduction targets in China’s 12th and 13th Five-Year Plan. Cols.1–4 report estimates for total cost and Cols.5–8 report 
estimates for cost efficiency. Plant-level controls include lnoutput, lnpe, lnpl, klr and lnerso2. Provincial controls include lpergdp, indratio, 
fdi_r, lindinvest, epustd, market, lpenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by 
plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01.

Appendix Table 6: Robustness analysis with different model specifications
Tobit model Tobit model without plant-level control

Baseline Marketalization Penalty Carbongdp Baseline Marketalization Penalty Carbongdp
(1) (2) (3) (4) (5) (6) (7) (8)

ETSannounce –0.0237 –0.0235 –0.0248 –0.0248 –0.0196 –0.0197 –0.0207 –0.0207
(0.0259) (0.0259) (0.0259) (0.0260) (0.0235) (0.0236) (0.0236) (0.0236)

ETSimplement 0.0348** –0.1969* –0.1033 0.1027** 0.0340* –0.1893* –0.0844 0.0967**
(0.0155) (0.1078) (0.0688) (0.0414) (0.0195) (0.1087) (0.0703) (0.0455)

ETSimplement# 
Mechanism

0.0226** 0.0163** –0.0819* 0.0218* 0.0140* –0.0757*
(0.0113) (0.0081) (0.0423) (0.0116) (0.0079) (0.0450)

Plant-level controls Yes Yes Yes Yes No No No No
Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes

Constant 1.1378 1.0844 1.1604 1.2121 0.4153 0.3595 0.4328 0.4765
(0.9578) (0.9522) (0.9572) (0.9591) (0.6959) (0.6956) (0.6939) (0.7006)

Observations 1102 1102 1102 1102 1102 1102 1102 1102
Log Likelihood 1235.2 1236.3 1236.6 1236.9 1219.3 1220.2 1220.2 1220.6

Note: This table reports robust estimates of ETS effect on cost efficiency for pilot power plants with Tobit model and Tobit model without 
plant-level control. Cols.1–4 report Tobit estimates and cols.5–8 report estimates from fixed effect model without plant-level control 
variables. Plant-level controls include lnoutput, lnpe, lnpl, klr and lnerso2. Provincial controls include lpergdp, indratio, fdi_r, lindinvest, 
epustd, market, lpenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by plant are reported 
in parentheses, * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table 7: Synthetic control method results

SCM Guangdong Shanghai Tianjin Chongqing Hubei

2011 –0.0014 –0.0120 –0.0072 0.0107 –0.0182
0.9604 0.8278 0.6046 0.5556 0.3366

2012 0.0081 0.0022 0.0014 0.0165 –0.0222
0.7968 0.9733 0.9778 0.6889 0.5401

2013 0.0720** 0.0653 0.0425 0.0249 –0.0243
0.0378 0.1813 0.2645 0.7778 0.8171

2014 0.1372*** 0.1357** 0.0829 0.0368 –0.0255
0.0073 0.0346 0.1538 0.8000 0.8817

2015 0.1543*** 0.1467** 0.0924 0.0513 –0.0265
0.0052 0.0365 0.1795 0.7778 0.9131

2016 0.0224** 0.0352*** 0.0295** 0.0092 0.0076
0.0470 0.0068 0.0279 0.5556 0.5767

2017 0.0810** 0.0825** 0.0407* 0.0014 –0.0051
0.0110 0.0308 0.0992 0.9222 0.8079

Note: Synth_runner command in Stata were used to calculate the p-values of the placebo test.

Appendix Table 8: Stochastic frontier analysis results

Panel A: SFA estimationsa,e

DV=Total cost

(1) (2) (3)

lnoutput 0.2823*** 0.2553*** 0.2724***
(0.0000) (0.0000) (0.0000)

lnpe 0.2940*** 0.1519*** 0.1956***
(0.0000) (0.0000) (0.0000)

lnpl 0.9259*** 0.9074*** 0.9538***
(0.0000) (0.0000) (0.0000)

klr –0.4789*** –0.4769*** –0.4952***
(0.0000) (0.0000) (0.0000)

lnerso2 0.3239*** 0.1218*** 0.1600***
(0.0000) (0.0000) (0.0000)

Year fixed effect Yes Yes Yes
Mundlak’s specification No Yes Yes
Region fixed effect No No Yes
Constant 1.5233*** –0.3478 –0.4578*

(0.0000) (0.2454) (0.2911)
Lambda 4.1754*** 7.5962*** 2.5824***

(0.0000) (0.0000) (0.0000)
Observations 1102 1102 1102

Panel B: Estimated efficiencyb

tre trem tremld

(1) (2) (3)

Mean 0.8140 0.8352 0.8353
Minimum 0.2182 0.4518 0.1485
Maximum 0.9875 0.9914 0.9848
Standard deviation 0.1149 0.1091 0.0958

Correlationc,e tre trem treml

tre 1 0.9298*** 0.8891***
trem 0.9426*** 1 0.8477***
treml 0.9509*** 0.8926*** 1

Notes: a Panel A reports results from SFA estimation. b Panel B reports descriptive statistics of estimated cost efficiency.  
c For the correlations, lower triangular cells report Pearson’s correlation coefficients, upper triangular cells are Spearman’s 
rank correlation. d As model (4) controls for the most fixed effects to address the possible omitted variable biases, we use 
the estimate efficiency (treml) from this model for our cost efficiency analysis. In fact, in the unreported results, we find 
that the use of alternative efficiency scores from other models do not affect our results. e Standard errors are in parentheses, 
* p<0.1, ** p<0.05, *** p<0.01.
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APPENDIX S3: STOCHASTIC FRONTIER ANALYSIS.

The stochastic frontier model was originally developed by Aigner et al. (1977). The basic 
formulation of the stochastic frontier model is:

 y X v uβ ′= + +  (A.1)

where y is the goal attainment measured by goal attainment, and X vβ ′ +  is the optimal frontier goal 
pursued by the individual, such as the minimum cost or maximal production. Xβ ′  is the explanatory 
part which determines the frontier and 20, uv N σ ∼   denotes the stochastic part. These two parts 
compose the ‘stochastic frontier’. u denotes the inefficiency term, where

20, uu U N σ = ∼    (A.2)

u also refers to the amount by which the individual fails to achieve the optimal goal (frontier).
In this study, we adopt stochastic frontier analysis to estimate the cost efficiency of thermal 

power plants. The cost frontier is firstly constructed using the following equation:

( ), , ; v uTC f Y X P e eβ=  (A.3)

where TC is the minimum cost to produce the electricity power, and ( ), , ;f Y X P β  denotes the 
deterministic part for the cost frontier. Specifically, TC is the total cost, Y refers to output measured 
by total electricity power generation, P is the price of inputs, including LP  and EP , which are the 
prices of capital (the installed power capacity) and labor (total employees), respectively, X is the 
vector of explanatory variables that affect the expense cost, ve  is the stochastic component of the 
cost frontier, and ( ), , ; vf Y X P eβ  denotes the optimal minimum cost and the deviation from this 
optimal cost due to inefficiency is captured by ue . Following the linear function, we further control 
the ratio of capital to labor (KL), SO2 emission per unit of power generation (SO2), and fixed effects 
of time ( td ) and region ( jl ), which are measured by a vector of year dummies and region dummies3, 
respectively. The modified equation can be written as follows:

( )ln ln , , , , 2, , ;  L E t jTC f Y P P KL SO d l V Uβ= + +  (A.4)

Moreover, we also adopt Mundlak’s (1978) specification here to control for potential 
unobserved individual heterogeneity. Mundlak (1978) put forward a method to further consider 
the correlation between explanatory variables and the individual specific term iη . The unobserved 
characteristics from the inefficiency term can thus be partially separated from the inefficiency term 
by adding this auxiliary equation into the main frontier model.

 i i iη µ γ= +  (A.5)

1

1 T

i i it
t

M M
T

µ π π
=

= = ∑  (A.6)

( )20,  i iid δγ σ∼  (A.7)

3.  A set of region dummy variables are constructed based on the divisions of North China, Northeast China, East China, 
South China, Southwest China, Central China, and Northwest China.
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where Mit is the vector of explanatory variable, Mi is a vector of the mean value for the respective 
explanatory variables, and π  is a vector of estimated coefficients. The persistent inefficiency term 
is 0iγ >  after separating the time-invariant provincial factors that do not affect the inefficiency. 
Provincial factors with short-run rigidities that have an impact on the inefficiency are captured by 

0itµ > .
The cost function with econometric specifications after adding the auxiliary equation is:

( )ln ln , , , , 2, , ;L E t j i it i itTC f Y P P KL SO d l Mβ π µ γ ν= + + + +  (A.8)

By adopting the above equation, the overall cost efficiency can then be computed based on 
estimation results as in the following equation:

( )exp
F
it

it it
it

TC
Costefficiency U

TC
= = −  (A.9)

where F
itTC  is the minimum expense cost of the ith plant at time t and itTC  is the observed total cost.




