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When and Under What Conditions Does an Emission Trading
Scheme Become Cost Effective?
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ABSTRACT

This paper studies when and under what conditions the actions undertaken by the
power plants involved in China’s emission trading scheme (ETS) pilot became
cost effective. Based on unique plant-level panel data and the difference-in-differ-
ences strategy, we identify that an insignificant initial reduction in cost efficiency
occurred at the announcement stage for power plants in the pilot provinces; how-
ever, the cost efficiency of the pilot plants increased significantly following formal
policy implementation. Additionally, the by-stage treatment effects differed across
the pilot provinces due to localized market and non-market variations. Localized
conditions of higher marketization, stricter policy enforcement, and lower carbon
dependence enhanced this positive effect. The synthetic control results confirmed
this variation in the policy effects. The carbon trading pilots resulted in improved
efficiency in power plants in Shanghai, Guangdong, and Tianjin during the period
2013-2017, with an associated total cost saving of approximately 29.75 million
RMB. To enhance the efficacy of the ETS policy, our findings suggest that the
design of the policy should consider localized external factors.
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1. INTRODUCTION

Due to the challenges of global warming, many countries have proposed carbon neutral
plans to achieve net zero carbon dioxide emissions by the middle of this century. Finding the path for
achieving the carbon neutral commitment with the lowest costs has thus become a significant challenge
around the world. As a market-driven instrument of environmental regulation with high flexibility,
an emission trading scheme (ETS) is believed to relieve energy and environmental stress in a more
cost-effective way than other measures (Gallagher et al., 2019). It also has substantial mitigation
potential with little negative impact on industrial competitiveness (Joltreau and Sommerfeld, 2019).
Understanding the tradeoffs of economic agents between profitability objective and environmental
compliance costs after ETS intervention is essential for effective governance. Although several
attempts have been made to measure the impacts of an ETS on corporate performance (Xiao et al.,
2021; Zhu et al., 2019), much less attention has focused on the cost dynamics attributed to ETS-
induced efficiency changes.
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This paper addresses this by examining China’s ETS pilot policy to quantitatively estimate
the impact of the ETS requirements on the cost of utilities. As the main contributor to greenhouse
reduction, the power generation industry in China has been required to make significant changes
to meet the need for climate mitigation (Duan et al., 2021). China has launched the carbon trading
market in 2021 and initially covers the power industry, accounting for nearly 40% of China’s carbon
emissions. China’s carbon trading reforms started in 2011, where the power generation industry
in the provinces/megacities of Beijing, Tianjin, Shanghai, Chongqing, Hubei, Guangdong, and
Shenzhen is covered. Power generation enterprises are expected to take the lead in carbon reduction
efforts. However, thermal power enterprises in China have been facing unprecedented pressure from
both the supply and demand sides (Liu et al., 2021). Strict emission reduction targets and control
measures could therefore further aggravate the financial distress being experienced by thermal power
enterprises. Therefore, the financial problems of thermal power enterprises are of considerable
concern, and understanding the cost implications of the ETS pilot projects is relevant for addressing
the financial stress of power plants and helping them to maintain a sustainable electricity supply
while optimizing the economic costs of the carbon policy in general.

Our research question is twofold: when does the ETS affect the production cost and the
associated cost efficiency of the thermal power plants, and are these effects different across the pilot
provinces if the localized conditions vary? Our identification strategy relies on the difference-in-
differences (DID) inference where the power plants in the pilot provinces comprise the treated group
and the plants in the non-pilot provinces comprise the control group. As the ETS pilot policy took
two years to implement after its announcement, we could distinguish the policy shock in two stages:
the announcement and formal implementation. To examine the cost dynamics attributed to the two-
stage policy shocks, both total production cost and cost efficiency are used as proxies to reflect the
cost dynamics, which allows us to explore whether power plants have made genuine efforts rather
than just tentatively cut down inputs or production to reduce emissions, because an improvement in
cost efficiency leads to sustained cost savings.

The results of the DID estimation illustrate that during the announcement stage, the plants
in the pilot provinces experienced an insignificant increase in total costs relative to the plants in
the non-pilot provinces. When the pilot policy entered into force after 2013, we found a significant
reduction in production costs for the treated group, which implies that the ETS announcement
encouraged them to undertake actions to prepare for the change that will be necessary with the
incoming carbon emission reduction requirements. Therefore, when the implementation stage
starts officially, the plants are well prepared to cut emissions more cost-efficiently. We observed
similar results if total costs were replaced by cost efficiency, as there was an insignificant downward
adjustment of cost efficiency for the pilot power plants in the announcement stage but a significant
increase in cost efficiency when the policy was formally implemented.

Several challenges were identified that may affect the validity of our results. First, the
estimated policy effects may not result from the difference between the treated and control groups.
We address this by constructing an event-study model to test the parallel trend assumption. Our
results confirmed the existence of a parallel trend before the shocks. Second, potential endogeneity
may arise if the ETS pilot provinces were not randomly selected. To address this issue, we employ the
propensity score matching (PSM) before the DID estimation by constructing a counterfactual control
group composed of non-pilots that had the same probability of being selected as pilots (Peikes et al.,
2008). Our results survived in the matched DID estimation. Third, there are confounding policies,
such as the SO, pilot policy and provincial CO, emission reduction targets in both the 12" Five-Year
Plan (FYP) and the 13™ Five-Year Plan. Our results remained after introducing a new policy dummy
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to capture the confounding effects. Fourth, cost efficiency is estimated through stochastic frontier
specification, where the efficiency is truncated between 0 and 1. We thus apply the Tobit model to
address the data truncation. All of these checks confirmed the robustness of our results.

We then uncover the condition through which power plants in one pilot province differ from
those in other pilot provinces. Our results illustrate that the treatment effects of the ETS differed
across pilot provinces. Drawing on external forces from localized characteristics, both market and
non-market factors, we find that the degree of marketization, environmental enforcement, and carbon
dependence are three potential mechanisms that induce the heterogeneity. High-level marketization
leads to more active and sensitive adaption to grasping business opportunities via fierce market
competition, strict environmental policy enforcement increases potential regulatory pressure and
makes firms take affirmative measures to avoid compliance cost, which means that regions with
stronger market competition and policy enforcement allow firms to deal more proactively with shocks
from the ETS. However, regions with a higher carbon dependence have difficulties transitioning to
a low-carbon energy system due to technology lock-in and resistance, which hamper improvements
in efficiency. Therefore, the effectiveness of the ETS depends not only on the actions of the plants
covered by the scheme, but also on the external forces being exerted where the plant is located. An
appropriate design of the ETS policy should consider these external factors to smooth the barriers
that may mute the efficacy of the policy.

Finally, we quantify the cost savings attributed to the ETS. As the underlying effects of the
ETS depend on the localized conditions, we estimate the effects by regions. Therefore, we employ
the synthetic control method proposed by Abadie and Gardeazabal (2003) for regional analysis.
We find that the cost efficiency in Shanghai, Guangdong, and Tianjin experienced a slight drop in
2011 when the pilot policy was announced, and then rose gradually relative to the synthetic control
plants when the formal implementation began in 2013 or 2014, which is in line with our DID results.
By comparing the regional difference, it can be seen that the ETS significantly improved the cost
efficiency for plants in Shanghai, Guangdong, and Tianjin. Also, the estimated average annual cost
efficiency improvement during the period 2013-2017 was 9.34 percentage points in Guangdong,
9.31 in Shanghai, and 5.76 in Tianjin. The cost saving attributed to ETS-induced efficiencies can be
calculated by multiplying the efficiency improvement with the total costs of the plants. The results
show that there was a total cost saving of 29.75 million RMB for plants in Shanghai, Guangdong, and
Tianjin over the 2013-2017 period, accounting for 29.94 % of the total cost in 2017. However, the
effects are invisible for thermal power plants in Chongqing and Hubei. The validity of the synthetic
control results passed the placebo test as suggested by Galiani and Quistorff (2017).

This study makes three main contributions to the existing literature. First, we add to the
discussion of policy instruments, in particular the debates on the price versus quantity instrument,
for promoting carbon mitigation and a low-carbon economy. Our results shed light on the cost-
effective advantage of a carbon ETS by proving the significant role of carbon trading in enhancing
the cost efficiency of thermal power plants. This also provides a promising solution for the survival
of thermal power plants, which is a pressing problem under the dual goals of power stability and
carbon reduction. Second, our study enhances our understanding of the policy process on regulating
carbon mitigation in the policy-making stage framework. We demonstrate firms’ manifestations
towards different policy stages by providing a comparison between the announcement and formal
implementation stages. It implies that power plants respond to the announcement of the regulation
and try to avoid further regulatory compliance costs after the formal implementation. Finally,
we also add to the literature on the effectiveness of the ETS in different localized circumstances
by highlighting the conditions that could effectively expand the benefits of the ETS for the cost
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performance of thermal power enterprises. Our findings therefore provide the theoretical inspiration
for accelerating the carbon reduction process. Recommendations for policy are also presented to
assist governments to design an ETS policy scheme that promotes carbon market reforms.

The remainder of the study is organized as follows. Section 2 summarizes the related
literature. Section 3 presents the theoretical framework, methodology, data sources, and explanation
of the variables. Section 4 illustrates the main results with robustness checks and discusses the
conditions under which the effects of the ETS become significant. Section 5 presents a regional
analysis by synthetic control and quantifies the cost savings associated with efficiency improvements,
and Section 6 provides the discussion and conclusion.

2. LITERATURE REVIEW

Based on Porter hypothesis, effective design and implementation of environmental
regulation could stimulate firms’ innovation and enhance their competitive advantage (Porter,
1991). Weitzman (1974) proposed the important efficiency distinction between equivalent price
and quantity controls in the regulated market. Economists have long debated this question, and
previous research has also extended the discussion over the use of these two tools in climate change
mitigation (Pizer, 2002). The price-based instrument is favored because of the cheaper costs and
higher incentives to abate (Tyler and Cloete, 2015), while the preferences for the quantity-based
policy are due to the fewer cost uncertainties, higher efficiency, and the advantage in inducing
socially optimal technology choice (Krysiak, 2008; Narita and Requate, 2021). Among different
regulation tools for carbon mitigation, hybrid ETS policies have gained more support as they yield
sizeable cost reductions (Abrell and Rausch, 2017). As a market-based management mechanism,
ETS creates strong motivation for firms to internalize the pollution costs through active reforms in a
more cost-effective way (Gallagher et al., 2019).

ETS policy has been applied in different national contexts and created unique opportunities,
such as ETS in the EU, Switzerland, the U.S., Canada, New Zealand, Korea and China (Narassimhan
et al., 2018). Efforts have been devoted to explore the optimal mechanisms for effective carbon
market, such as setting of appropriate carbon prices, and allocation methods of allowances and
introducing new instruments (Hintermayer, 2020; Newbery et al., 2019; Peng et al., 2021).
Although with different cap stringency and allocation practices across nations, existing studies have
demonstrated the promising co-benefits due to the implementation of ETS (Bayer and Aklin, 2020;
Calel and Dechezleprétre, 2016; Teixidé et al., 2019).

China has recently become the trading market with the largest carbon emissions coverage in
the world. Prior research has illustrated the importance of understanding the specific mechanism of
China’s ETS, which helps to identify and settle the obstacles to achieving carbon neutral commitment
(Chen et al., 2021; Liu and Zhang, 2021). Since its official launch of ETS pilot policy, discussion
on China’s ETS impact and effectiveness has boomed over recent years. A large and growing body
of research has highlighted the positive environmental effects of China’s ETS, especially on carbon
reduction (Gao et al., 2020; Xuan et al., 2020). Previous evidences show that the ETS-induced
carbon mitigation could be achieved via improvement in energy and technical efficiency, lower
energy consumption, fuel switch, or industrial structure adjustment (Y. Hu et al., 2020; Zhu et al.,
2022). In line with from Porter hypothesis, a growing body of research also stresses the long-run
positive effect of the ETS on promoting low-carbon innovation (J. Hu et al., 2020; Zhu et al, 2019),
and green total factor productivity (Li et al., 2022). Renewable energy could also be the beneficiary
of the ETS, for example, Liu and Zhang (2021) found that ETS has promoted the local development
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of non-fossil energy, such as the share of hydropower, nuclear, wind power and photovoltaic power.
Considering regional development, research has tried to provide evidences on ETS’s regional
economic and social dividend, such as recovering GDP losses (Wu and Gong, 2021), improving
employment (Yu and Li, 2021), and inducing poverty alleviation (Zhang and Zhang, 2020).

Despite these identified benefits, recent evidence has also indicated a negative impact of
ETS policy in the short term. ETS could decrease productivity and employment in related industrial
sub-sectors, and thus fail to avoid a negative shock on competitiveness (Zhang and Duan, 2020).
Moreover, the administration and compliance costs incurred due to the complex implementation
process of ETS could become a significant burden for the relevant sectors and firms (Wang et al.,
2018). This cost burden could be extremely higher for the power sector, which may further shift
more mitigation burden to the industry sector due to the tighter ETS target (Pietzcker et al., 2021).
Thermal power plants in China are responsible for electricity system safety maintenance and system
peak adjustment, while they are currently going through a difficult transition phase (Liu et al.,
2021). Considering the dual role in reducing emissions and maintaining power stability, the financial
performance of power plants under the ETS implementation is worthy of attention.

Although previous research has highlighted firm’s efforts in pursuit of higher efficiency,
much less attention has been paid to whether the economic loss caused by carbon reduction could be
covered by efficiency improvement. Moreover, variations in cost performance due to ETS-induced
efficiency change remains unknown, especially for entities in highly-regulated sectors such as
power generation industry. Therefore, this study has tried to answer these questions based on power
plants’ operating data, which allows us to track how the system strives to balance environmental and
economic demands arising from the implementation of carbon pricing policies.

3. RESEARCH DESIGN
3.1 Theoretical framework

Cost analysis

We formalize a theoretical model for analyzing the cost performance of power plants. We
start with the function of cost performance below:

C=f(V.Z:B) (1

Internal factors of a power plant are the key to determining its cost performance. Therefore, V refers
to a vector of plant-level explanatory variables that could influence the plants’ cost performance.
Specifically, V considers factors such as output measured by total electricity power generation
output (output), the price of inputs such as capital(p,) and labor (p,), the endowment structure
(kIr), and undesirable output of pollution (erso2). Moreover, regional environment could act as
an important factor for the operation and management of business entities, further affecting their
cost performance (Alsaleh and Abdul-Rahim, 2018). We thus additionally considering a vector of
provincial factors related to economy, policy, technology and environment conditions as explanatory
variables represented by Z. These provincial-level variables include GDP per capita (pergdp),
industry structure (indratio), foreign direct investment (fdi_r), investment in pollution control
(indinvest), marketization degree (market), environmental enforcement (penalty), policy uncertainty
(epustd), technological innovation capacity (fotalpat) and carbon dependence (carbongdp).
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Policy analysis

An effective strategy to estimate the ETS impact could be to compare the differences in
cost performance of pilot plants and non-pilot plants before and after ETS policy came into effect.
Following Ashenfelter and Card (1985), in a simplified model with two regions (pilot, non-pilot) in
two time periods (pre, post), the difference can be estimated as,.

ﬁDD — (Epost _6;;2[)_(6p0st _Epre ) (2)

pilot non—pilot non—pilot

where (E o -C [’,’;f”) evaluate the changes in cost performance before and after ETS policy took

. : 7~ post __(pre .
effect in pilot plants, and (C:mm_pl.lm Cnon—]zilm) refers to the changes in cost performance of non-

pilot plants. The estimator S represents the difference between these two changes and can be
considered as the treatment effect after excluding interference of externalities.

3.2 Empirical method
Difference-in-Differences model

We choose DID model as our identification strategy to compare the cost performance of
power plants with and without implementation of the ETS pilot policy. DID model helps reduce
other exogenous interference by calculating the estimator ﬁDD as discussed above (Blackburn et al.,
2020). The quasi-experiment in China’s ETS pilot policy creates two groups of power plants in the
treated and untreated provinces respectively, which is advantageous for conducting DID analysis.
Previous research has also shown the validity of DID method in analyzing China’s ETS policy
(Chen et al., 2021).

The treatment group comprises thermal power plants located in the pilot provinces, and the
control group comprises plants in the non-pilot provinces. China’s ETS pilot policy was implemented
in two phases: the pilot provinces were announced in 2011, and formal implementation occurred
after 2013, allowing us to distinguish between the announcement effect and trading effect (Cui et
al., 2021). It is assumed that regulated plants began preparing their carbon emission controls after
the ETS announcement, while essential information such as carbon market quotas and carbon price
could only be ensured after the official launch of the trading market. Policy recipients may behave
differently at different policy stages (Ladino et al., 2021), and identifying these differences could
enhance our understanding of the policy process on regulating carbon mitigation in the policy-
making stage framework. In this study, we thus consider the impact of both the ETS announcement
and its implementation on the pilot power plants. We use the DID methodology to estimate whether
there is a significant difference in cost performance between ETS and non-ETS power plants by
adopting the following equation.

Y, =B+ BETS,, . + BETS,

implement

+AX, +n,+y, +¢, 3)

where i and 7 refer to power plant and year, respectively. Y is the dependent variables of total cost and
cost efficiency, and ETS,,.punce a0d ETS,,0men: are the interactive terms of treated pilot provinces and
policy intervention year ETS,,,,,..c. takes the value of one for all plants sitting in the pilot provinces
after 2011, the year of the ETS announcement, and ETS,,,..... €quals one for pilot provinces after
the formal implementation year of 2013 for Guangdong, Shanghai, and Tianjin provinces and 2014
for Chongqing and Hubei provinces. Therefore, S, and S, measure the ETS announcement effect
and implementation effect, respectively. X, is a set of covariates that will influence total cost and cost
efficiency, including both plant-level and provincial-level characteristics, 4 denotes the estimated
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coefficients for covariates. 77, and y, denote plant fixed effect and year fixed effect, respectively,
controlling for the firm-level and year-level unobservable factors that could affect cost performance
of power plants, and &, is the error term.

Event study

The validity of DID estimates is based on the parallel trend assumption that any external
shocks other than the policy treatment would affect the pilot and non-pilot groups in a similar
manner (Xiao et al., 2021). Therefore, the main concern in DID analysis is that the observed
distinction between the power plants in the pilot and control provinces may not be the result of the
policy treatment. A common diagnostic approach is to look at whether the outcomes in the treatment
and control groups differ significantly before the policy change (Freyaldenhoven et al., 2019; Fuest
et al., 2018). Event study allows to test this parallel trend assumption by providing comparison of
yearly outcome trends in two groups (He et al., 2020). Therefore, we adopt an event study approach
to detect trends before the ETS policy came into effect, and to present the yearly dynamic effect after
the ETS announcement and implementation.

We use the following form of event studies:

4
Y, =Y B,D/Treatment, + AX, +1,+7, +&,, “4)
=5

where plant and year are indexed by i and ¢, notation for yearsis =1, 2, ..., T, ...T, Y, is the cost
outcome, including total cost and cost efficiency, Treatment; indicates whether a power plant sits in
the pilot province, and D/ is a set of time dummies equal to 1 if # = j and O otherwise. The coefficient
estimation of /3, thus could be conducted separately for each year except the base year of T, which
is set to 2010, one year before the ETS pilot announcement. X, concludes both plant-level and
provincial-level control variables, identical with the previous DID model, 7, is a set of plant fixed
effects, y, is a set of year fixed effects, and ¢, is the error term.

3.3 Data source

Thermal power plant data from 2006 to 2017 were collected from Compilation of
Statistical Data of China’s Power Industry and Survey of China Electricity Council. For provincial-
level data, economic policy uncertainty (EPU) index data were obtained from Yu et al. (2021). To
measure the degree of provincial marketization, the provincial market index from the China Market
Index Database was employed. To calculate carbon intensity, carbon emission data were collected
from the China Emission Accounts and Datasets (www.ceads.net). The number of environmental
administrative penalty cases were found in the China Statistical Yearbook on Environment. Other
provincial level data were calculated from data in the China Statistical Yearbook.

As we focus on the ETS effect on thermal power plants in the pilot provinces, Beijing and
Shenzhen are excluded because there are no thermal power plant data for these two cities. Therefore,
in this study, we only consider the cost performance of power plants in five pilot provinces: Shanghai,
Guangdong, Tianjin, Chongqing, and Hubei. Our final dataset included 92 thermal power plants in
China for the period 2006-2017', of which 18 power plants were in the treated group of ETS pilot
provinces. Our dataset contains the observation period of at least three years both before and after
policy treatment and allows us to carry out the research. Descriptive statistics are shown in Table 1.

1. Unbalanced panel data due to missing data in 2016-2017 for few power plants.

Copyright © 2024 by the IAEE. All rights reserved.



268 / The Energy Journal

Table 1: Descriptive Statistics

Variable Definition Units Obs Mean  Std. Dev. Min Max
Explained variable

Intcost Total cost, in log form Yuan 1102 15.5867 1.2402  11.7027 25.7815
costeff Cost efficiency — 1102 0.8353 0.0958  0.1485 0.9848
Covariates (Plant level)

Inoutput Annual power output, in log form billion KWH 1102 4.5254 0.5669  3.1781 9.0366
Inpe Standardized energy price calculated Yuan 1102 6.8322 1.3416  5.1218 22.2862

by total energy cost/ energy
consumption, in log form
Inpl Standardized labor price calculated Yuan 1102 8.7139 1.1575  5.4438 21.2946
by total labor cost/ the amount of
labor, in log form
klr Capital-labor ratio %o 1102 0.3842  0.8155  0.0309 7.5000
Lnerso2 SO, emission per unit of power 10,000 tonnes 1102  8.5916 0.4792 3.6442 9.0867
output, in log form

Covariates (Provincial level)

Ipergdp GDP per capital, in log form 100 million yuan 1102  10.5358  0.5698 8.7165 11.8212
indratio Value-added of the secondary industry % 1102 0.4127 0.0650  0.2352  0.5738
/GDP
fdi_r Foreign direct investment/GDP % 1102 0.0043 0.0078  0.0000 0.1038
lindinvest  Investment in the treatment of 10,000 yuan 1102 123952 0.7419 105117 14.1637
industrial pollution, in log form
epustd Economic policy uncertainty index — 1102 225105 154700 0.3348 86.2528
ltotalpat Number of total patent application, in Number 1102 10.5919  1.5414  6.5088 13.3500
log form
market Market index — 1102 8.0675 1.8171  4.1380 11.2330
Ipenalty Number of environmental Number 1102 8.0506 1.0741 4.2195 10.5567
administrative penalty cases, in
log form
carbongdp Carbon emission per GDP 10,000 tonnes/yuan 1102 2.4588 1.6343  0.5943 8.6053
3.4 Variable

Two dependent variables

This study mainly utilizes two dependent variables to measure policy effects on cost
outcome, total cost, and cost efficiency. We collect plant-level data to examine the internal cost
shift before and after the policy change. Total cost is used to study the direct effect of the policy on
power plants’ cost changes. However, in response to the increasing carbon emission costs resulting
from the ETS, plants may conduct proactive measures such as technology improvement, equipment
upgrading, and process optimization, which result not only in a reduction in total costs but also
changes in the theoretical cost frontier. To explore this potential effect, cost efficiency is estimated to
see whether the ETS leads to internal upgrading and improvements in efficiency in thermal power
plants.

Measurement of cost efficiency of thermal power plants

We calculate cost efficiency for each power plant from 2006 to 2017 to explore whether
plants’ cost efficiency has been improved through internal upgrading. Cost efficiency is calculated
by conducting a stochastic frontier analysis, which has been widely used in efficiency research
(Zhang, 2017; Zhang and Adom, 2018). Following the basic formulation proposed by Aigner et
al. (1977), we construct the optimal cost frontier, which is specified as the function of input prices,
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output, and a set of explanatory factors (Filippini and Greene, 2016). Moreover, Mundlak’s (1978)
specification is adopted with the explanatory variables to control potential, unobserved, individual-
specific heterogeneity (Filippini and Zhang, 2016). After log-transformation of cost function,
maximum likelihood estimation can be used to determine the parameter values in the cost function,
sample data can be used to determine the theoretical minimum cost for each power plant, and the
ratio of theoretical minimum cost to actual total cost can be used to determine cost efficiency. The
detailed steps in the stochastic frontier analysis are provided in Appendix S3.

Independent variable

ETS, . pounce and ETS;,pjomen are two dummy variables for measuring plants covered by the
CO, emissions trading policy after treatment. Specifically, they are constructed by interacting a pilot
dummy variable that represents whether the power plant is in the ETS pilot provinces with dummy
variables of policy announcement year (2011) and implementation year (2013 for Guangdong,
Shanghai, and Tianjin and 2014 for Chongqing and Hubei), respectively.

Control variables

Plant-level covariates

Electricity output. Electricity power generation is the direct output of power plants and
reflects the plant’s installed capacity and production efficiency (Tzimas and Georgakaki). Higher
power output usually requires for more labor and capital inputs, accompanied by higher production,
operation and maintenance costs.

Input price. The main inputs are energy and labor, which directly affect cost (Filippini and
Greene, 2016). We include the prices of labor and energy per unit as the input prices for electricity
production. Specifically, Inpe is total energy cost divided by the amount of energy consumption, and
Inpl is total labor cost divided by the amount of labor. Moreover, both labor cost and energy cost are
adjusted by the provincial electricity price to avoid the influence of inflation on cost.

Endowment structure. The capital labor ratio is used to measure endowment structure,
which refers to the ratio of the quantities of the two main inputs, capital input and labor input, for
power plants (Chen et al., 2021). In this study, capital refers to the installed power capacity and labor
is measured by total employees, representing the basic internal resource allocation in electricity
production.

SO, emission. SO, is one of the main pollutants emitted by thermal power plants, and
is also regarded as an important measure for the level of air pollution. SO, emission per unit of
power generation could reflect a plant’s environmental management and cleanliness performance in
electricity production (McLinden et al., 2016).

Province-level covariates

GDP per capita (Ipergdp). GDP per capita reflects the regional economy development
level. Considering higher demand for electricity in economically developed areas, GDP per capita
could potentially influence the operations and financial performance of power plants. It is calculated
by annual provincial GDP divided by total population and constructed in a logarithmic form (Xiao
et al., 2021).

Industry structure (indratio). Industry structure is assessed by calculating the ratio of
added value of the secondary industry to GDP. The proportion of secondary industry indicates the
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development of industry and the regional industrial economic structure (Huang and Du, 2020). It
could influence the regional power supply and demand situation and may further affect operation
efficiency of power plants.

Foreign economy (fdi_r). The ratio of foreign direct investment to annual GDP is used to
measure economic openness (Yang et al., 2021). Since the development of infrastructure such as
electricity is an important factor attracting foreign investment, the ratio of foreign direct investment
could be considered as a potential factor affecting the development of power plants. In order to avoid
the influence of exchange rate fluctuations, we also adjust foreign direct investment by the annual
exchange rate.

Environmental investment (lindinvest). Environmental investment reflects provincial
environmental protection and pollution control efforts, and is expected to help reduce environmental
pollutants from the power sector. It is assessed by the treatment of industrial pollution in log form
(Xuan et al., 2020).

Policy uncertainty (epustd). We use the economic policy uncertainty index to evaluate the
policy environment. The uncertainty of policy may affect the policy risks as perceived by power
plants and thus influence their operational and management activities (Yu et al., 2021).

Innovation capacity (Itotalpat). Regional innovation capacity reflects the development
and intensity of regional innovation systems, further influencing technical performance of regional
subjects. Regional innovation capacity is measured by the number of total patent applications in the
logarithm (Liu and Zhang, 2021).

Marketization (market). Marketization reflects the dynamics of the market and advancement
of the market economy, which could affect business entities’ capacity of market responsiveness and
resource allocation. Following Wang et al. (2019), we use the comprehensive market index, which
considers the relationship between government and market, development of the non-state economy,
product market, factor market, market intermediary organization, and legal system environment.

Environmental enforcement (Ipenalty). A higher intensity of environmental law enforcement
could also lead to enterprises experiencing higher environmental pressures (Blundell, 2020).
Environmental enforcement is measured by the number of provincial environmental administrative
penalty cases in the logarithm.

Carbon dependence (carbongdp). Carbon dependence describes the level of carbon
pollutants emitted during economic development and could also reflect the difficulty and potential
burden of reducing carbon dioxide emissions. Carbon dependence is measured by total provincial
CO, emission inventory divided by annual GDP (Zhang and Duan, 2020).

4. MAIN RESULTS
4.1 Baseline results

In order to identify the effect of the ETS announcement and implementation, we test three
aspects: (a) only ETS,,,puce» () only ETS;piemenss (€) bOth ETS iypunce a0 ETS;piemens. We first estimate
the ETS effect on the total costs of thermal power plants. Columns (1) and (2) in Table 2 show that
the ETS effect on power plant costs is not significant when considering the policy announcement
and implementation separately. Next, we consider both policy announcement and implementation
in one equation (Table 2 column 3), and although the results are not significant, there is initially
an increase in power plant costs after the year of announcement and then a decrease in costs after
the formal implementation year. The results indicate that the ETS announcement may provide a
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Table 2: Baseline analysis

DV=total cost DV=cost efficiency
(1) (2) (3) 4) (5) (6)
ETS ounce -0.0459 0.0082 -0.0041 -0.0237
(0.0758) (0.0667) (0.0232) (0.0262)
ETS,ptement -0.0917 -0.0961%* 0.0220 0.0348%%*
(0.0656) (0.0509) (0.0152) (0.0157)
Plant-level controls Yes Yes Yes Yes Yes Yes
Provincial controls Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes
Constant 1.2818 1.2571 1.2174 1.0632 0.9715 1.0865
(2.9885) (2.8314) (3.0040) (0.9226) (0.8888) (0.9250)
Observations 1102 1102 1102 1102 1102 1102
Within R? 0.9237 0.9239 0.9239 0.0910 0.0927 0.0940

Note: This table reports baseline estimates of ETS effect on total cost and cost efficiency for pilot power plants. Cols.1-3
report the estimate for total cost and cols.4-6 report the estimate for cost efficiency. Plant-level controls include lnoutput,
Inpe, Inpl, klr and Inerso2. Provincial controls include lpergdp, indratio, fdi_r, lindinvest, epustd, market, Ipenalty, ltotalpat
and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by plant are reported in parentheses, *
p<0.1, ** p<0.05, *** p<0.01.

warning for the pilot power plants that encourages them to begin to prepare for the changes that will
be necessary with the incoming carbon emission reduction requirements, which means that when
the implementation stage starts officially, the plants are well prepared to cut emissions with the most
cost-efficient approach.

There are two possible reasons for the cost reduction. The first reason is that the pilot
power plants directly compressed spending on capital and labor or cut down their electrical
production to reduce carbon emissions (Zhang and Duan, 2020). This can be regarded as a short-
term response, as it is not sustainable if the plant is to remain competitive. The second reason is that
thermal power enterprises improved their cost efficiency by undertaking internal reform measures
in their operations and management, such as improving resource utilization efficiency, conducting
technological innovation, optimizing operation processes, and so on. The latter is what we expected
from the ETS policy as enhancement in cost efficiency will lead to sustained cost savings in the long
run. Therefore, we evaluate the ETS effect on the cost efficiency of pilot power plants to see whether
it induces continuous improvement in cost performance.

The results in Table 2 column (6) shows that cost efficiency may initially be reduced
(not statistically significant) and then be significantly improved due to the ETS implementation.
Enhancement of cost efficiency implies that the cost reductions are not a temporary situation
resulting from directly cutting down expenditure or output, but rather that the power plants in the
pilot provinces have undertaken long-term reform measures, such as upgrading their facilities,
technologies, or management when confronted by the environmental regulation stress. Our results
are in line with Cui et al. (2021), who argue that firms’ respond to the ETS by conserving energy,
switching to low-carbon fuels, reducing labor and capital inputs, and improving firm productivity
to reduce emissions while maintaining the same level of output. This also sends a good signal
that the ETS policy has forced thermal power enterprises to carry out internal reforms to reduce
compliance costs. Moreover, since the pilot power plants are assumed to undertake long-run internal
reform measures to reduce carbon emission, the remaining reduction in total cost in addition to the
cost efficiency may also be explained by other benefits from decarbonization efforts. For example,
power plants could spend less expenditure on sewage charges or environmental taxes, or apply more
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subsidies for their clean transition, such as optimizing energy structure and enhancing resource
recycling.

4.2 Test for parallel trend assumption

The most important premise for the DID analysis is to satisfy the parallel trend assumption.
In other words, to provide evidence that pilot and non-pilot areas had similar trends before the ETS
policy. Therefore, we adopt the event study method to test the trend before and after the ETS policy.
The policy effects on total cost and cost efficiency from 2006 to 2017 are shown in Figures 1(a) and
1(b). The default baseline year is 2010, one year before the ETS policy announcement.

As is shown in Figure 1, the coefficients in the pre-ETS period (before 2011) do not show
obvious differences between the pilots and non-pilots, which meets the parallel trend assumption
for the DID analysis. In the post-regulation period (after 2011), the effect of the ETS announcement
is not significant for the first two years; however, a clear downward trend in the ETS effect on
total cost appears after 2013, the year of the ETS implementation. This indicates that the ETS has
reduced the costs of power plants since 2013. A consistently clear upward trend of policy effect on
cost efficiency can be observed in the same period. Moreover, results from event study analysis also
address the expectation effect before ETS implementation, as no non-clear differences are found
between the pilots and non-pilots before 2011.

We also perform other methods to test the parallel trend. We first follow Liu and Zhang
(2021) and conduct a set of pre-period placebo intervention tests by adding the interaction terms
of Treatment*Post,y,,, Treatment*Post,ys, Treatment*Post,, and Treatment*Post,y;,. If there is no
significant difference in cost outcome between pilot and non-pilot plants in the above parallel trend
analysis, the estimated coefficients of the treatment*post are expected to be statistically insignificant.
Otherwise, there may be some unobservable factors other than the ETS that induce the higher cost
performance of the pilot plants. The results in Appendix Table 1 show that the coefficients of the
interaction terms are insignificant for both total cost (columns 1-4) and cost efficiency (columns
6-9), which addresses this concern.

We also follow the method of J. Hu et al. (2020) to test the parallel trend by using pre-ETS
period data. A time trend variable (7Trend) is constructed to measure time linear trends between the
pilot and non-pilot provinces, which are assigned values of 1, 2, 3, 4, 5 in 2006, 2007, 2008, 2009,
2010, respectively. As it is assumed there were no systematic differences in cost trends between the
pilot and non-pilot areas before the ETS policy announcement, the coefficient of treatmentxtrend
is supposed to be statistically insignificant. The results in Appendix Table 1 columns (5) and (10)
support this assumption, which once again suggests that the parallel trend assumption of the DID
approach is not violated.

4.3 What makes the policy effect different?

We then explore potential factors that could impact on the effectiveness of the ETS, as the
actual effects on cost performance of the ETS may vary in practice. Since China ETS policy started
in pilot provinces and has been recently expanded for nationwide implementation, it is important to
explore different provincial policy elements and identify key mechanisms that could influence ETS
policy effectiveness. It allows us to give more specific and practical policy implications for enhancing
ETS effectiveness. We thus try to uncover the local conditions that could effectively expand ETS
benefits from the perspective of policy implementation environment (marketization degree), policy
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enforcement intensity (environmental enforcement) and difficulty in achieving policy goals (carbon
dependence). Based on the benchmark DID model, we further interact ETS,,iom.. With these three
provincial characteristics that may act as the impact mechanisms in Table 3.

Table 3: Heterogeneity analysis with different impact mechanisms

DV=Total cost DV=Cost efficiency
Impact Mechanism  Marketalization ~ Penalty Carbongdp Marketalization ~ Penalty Carbongdp
(D (2) 3) ) 5 ©)

ETS nounce 0.0072 0.0132 0.0121 -0.0235 -0.0248 -0.0248

(0.0673) (0.0668) (0.0671) (0.0263) (0.0262) (0.0263)
ETSptement 1.4250%%* 0.5513%*%* —0.3325%* -0.1969* -0.1033 0.10273%*

(0.6625) (0.2681) (0.1520) (0.1092) (0.0697) (0.0420)
ETS,piement* —0.1485%* -0.0767** 0.2848%* 0.0226%* 0.0163%* -0.0819*
Mechanism (0.0658) (0.0325) (0.1618) (0.0115) (0.0082) (0.0428)
Plant-level controls Yes Yes Yes Yes Yes Yes
Provincial controls Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes
Constant 1.5775 1.1334 1.0029 1.0316 1.1044 1.1481

(2.9151) (2.9998) (3.0278) (0.9204) (0.9249) (0.9261)
Observations 1102 1102 1102 1102 1102 1102
Within R? 0.9246 0.9243 0.9242 0.0958 0.0963 0.0968

Note: This table reports heterogeneous estimates of ETS effect on total cost and cost efficiency for pilot power plants with
different impact mechanisms. Cols.1-3 report the estimate for total cost and cols.4—6 report the estimate for cost efficiency.
Plant-level controls include lnoutput, Inpe, Inpl, kir and Inerso2. Provincial controls include Ipergdp, indratio, fdi_r, lindin-
vest, epustd, market, Ipenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered
by plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01.

A. Impact of Marketization

Policy implementation environment is a crucial influencing factor in determining policy
effectiveness (Haggerty et al., 2018). As a market-driven instrument, the ETS policy could be
particularly influenced by the local market economy development (Ren et al., 2020). The external
market environment exerts pressures on enterprises, which need to adjust their competition
strategy formulation to adapt to survive and prosper (Collis, 1991, Scherer & Ross, 1990). Market
competition factors of transaction volume, price, cost, and competitiveness directly affect trading
activities and market efficiency (Healy et al., 2014). High-level marketization promotes capital flow,
market element development, and resource allocation (Wu, 2002), and in a high-level marketization
environment, the more efficient and competitive enterprises are more likely to obtain business
opportunities and resources via market competition (Gao et al., 2010; Xie, 2017), which could
lead to more active internal adjustments, more sensitive market adaption, and potentially higher
production efficiency for enterprises (Cui et al., 2020). Therefore, in order to grasp the competition
opportunities and winning advantages, power plants are more likely to engage actively in emissions
trading with higher efficiency under the circumstances of rapid market development and fierce
competition. When carbon emissions are brought into the market, enterprises respond more quickly
in the face of market reform resulting from the ETS. Based on this view, advancement of the market
economy is considered an important catalyst for ETS policy effectiveness.

The marketization index is adopted in this study to reflect market economy development
according to Wang et al. (2019). In Table 3 columns (1) and (4), we aim to estimate whether
heterogeneity in provincial market development could influence ETS effectiveness. The significantly
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positive coefficients of ETS,,men* market in both the cost and cost efficiency equations show that the
development of provincial marketization contributes to the cost savings and efficiency enhancement
induced by the ETS pilot policy. The results are consistent with Chen et al. (2021) and J. Hu et al.
(2020), who found that the marketization level enhances the positive effect of the carbon ETS on
entities’ efficiency or innovation performance.

B. Impact of environmental enforcement

Local environmental enforcement regime could reflect the orientation of environmental
official, the institutional capacity of enforcement teams, and the external political support (Francesch-
Huidobro et al., 2012). The intensity of environmental enforcement is assumed to be a key factor in
the effective implementation of a carbon emission trading market. For policy recipients, as “rational”
economic entities, the core organizational goal is profit maximization (Schoemaker, 1993). The
level of environmental supervision and enforcement will impact on an enterprise’s management
decisions about how they will adapt to the policy requirements and enforcement (Heyes and Kapur,
2009; Pashigian, 1982). In areas with stricter environmental regulations, enterprises will be vigilant
about policy requirements and rules and implement adaptive strategies to avoid penalties (Sun et al.,
2019). Thus, the greater the intensity of environmental law enforcement, the higher the costs faced
by enterprises for non-compliance, and the more likely enterprises will follow the ETS regulations
to avoid violation penalties (Blundell, 2020). For policy enforcers, the operation of the ETS requires
a high level of execution, such as collection and management of emission information, supervision
of market transactions, punishment of non-compliance with trading rules, and management of
levies on excessive pollution. A high intensity of policy enforcement provides necessary support
and ensures orderly operated market transaction for the implementation of emission trading (J. Hu
et al., 2020).

To test whether environmental law enforcement affects ETS policy effectiveness, we use
the interaction between ETS,, .. and the number of environmental administrative penalty cases.
The results from Table 3 columns (2) and (5) show that the ETS has a greater promoting effect on
cost reduction and cost efficiency improvement in regions with higher policy enforcement intensity,
which is consistent with J. Hu et al. (2020). It implies that plants have taken active measures to
enhance cost efficiency and relieve the cost burdens of adapting to the policy regulation pressure.
Therefore, policy enforcement is essential for ensuring ETS effectiveness, as it affects the behaviors
and strategies of both ETS market managers and participants. Support from local governments,
especially those responsible for environmental law enforcement, could be an important contributing
factor in the effective implementation of China’s ETS.

C. Impact of carbon dependence

Due to different local resource endowments and economic development process, the
difficulty of achieving environmental policy objectives could vary substantially across regions.
Regional dependence on high carbon-emitting industries is a major obstacle to achieving carbon
reduction targets (Janipour et al., 2020). Arthur (1989) first put forward the theory of path dependence
in the process of technological evolution, which explains that the advantage of scale return for early
entrants makes it difficult for the latecomer technology to gain benefits. Regional economies could
therefore become locked into development paths that lose dynamism (Martin and Sunley, 2006).
Similarly, a carbon-based energy system that benefits from long-term incremental returns may also
create a lock-in effect that hampers the transition to low-carbon alternatives (Erickson et al., 2015).
Participants who are benefitting from the existing fossil fuel-intensive system will try to maintain
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it, which further reinforces the lock-in of existing technology systems and impedes low-carbon
innovation (Liu et al., 2017). Therefore, the primary carbon emission intensity of different regions
could affect ETS effectiveness on plant cost performance. Regions with higher carbon dependence
may have higher resistance to low-carbon energy systems and technological innovation, resulting in
reduced ETS effectiveness on the cost efficiency improvement of pilot plants.

We adopt the indicator of carbon emissions per GDP to measure carbon emission intensity.
In line with our hypothesis, it is found that carbon emission intensity imposes a significant negative
ETS impact that leads to higher costs and lower cost efficiency of power plants (Table 3, columns
(3) and (6)). This finding supports the conjecture that provinces with a higher economic dependence
on carbon-intensive industries experience more pressure when preparing for the ETS, as they have
more difficulty reducing emissions due to the significantly higher costs of introducing and reforming
low-carbon technologies and facilities. A relatively more tolerant attitude towards pollution due
to high economic dependence on polluting entities could be another reason, as there may be less
motivation for radical transformation. On the other hand, those with a lower emission intensity can
respond more flexibly to the ETS reform and achieve more cost savings. A potential problem is that
current difficulties with emissions reduction may depend more on emission status in the previous
period. Therefore, in our unreported results, we also test whether a one-year lag of carbon intensity
affects current cost performance. The results remain consistent and shows robustness of the negative
ETS effect on both cost savings and cost efficiency.

Therefore, we conclude that there are four potential factors that will influence ETS
effectiveness in improving power plants’ cost performance. A higher degree of marketization,
stricter environmental enforcement, and lower carbon dependence provide a favorable environment
for thermal power plants to achieve more cost savings and higher cost efficiency when facing the
emissions reduction pressure required by the ETS policy.

4.4 Robustness check

A. PSM-DID analysis

A significant challenge is that the ETS pilot provinces were not randomly selected, which
can result in potential endogeneity issues and violate DID assumption. Although we have controlled
provincial economic, policy, technology and environment factors in the model, the DID model and
event study design that we adopted are still subject to potential estimation bias from selection. To
relieve the non-random selection bias of the ETS treatment, the propensity score matching method
and difference-in-difference model (PSM-DID) are integrated to examine the robustness of the
baseline DID results. PSM is first performed to match the pilot and non-pilot groups. The basic idea
is to create a counterfactual control group composed of non-pilots that had the same probability
of being selected as pilots (Peikes et al., 2008). First, a logistic regression is applied to estimate
propensity scores, and the radius matching procedure within calipers of 0.05 is conducted to obtain
control groups. Second, the DID model is applied using the treatment group and new counterfactual
control group after matching, which dropped those unmatched observations with the PSM procedure.

The PSM-DID results in Appendix Table 2 show that both the baseline and heterogeneous
analyses are robust after dropping the unmatched samples. Therefore, the matching process between
the treated and control groups does not significantly affect our main outcomes. Also, the balancing
test of the PSM procedure is shown in Appendix Table 3, indicating no significant differences
between covariates in the treated and untreated group after matching. All standardized biases are
less than 18%, which suggests a high matching quality of data pairs.
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B. Excluding potential effect of confounding factors

The DID approach also assumes no other confounding factors that might affect the
outcome variable simultaneously with the policy treatment. Therefore, we control other factors with
potential impact on plants’ cost efficiency over the same period. First, as the SO, pilot scheme
was implemented in 2007, which was within our research period, we construct a dummy variable
SO2ETS to control for its confounding impact on power plants. SO2ETS is equal to 1 if the plant sits
in a pilot province for the SO, ETS, which included Jiangsu, Zhejiang, Tianjin, Hubei, Hunan, Inner
Mongolia, Shanxi, Chongging, Shaanxi, Hebei, and Henan. Even with the lower significance of the
carbon mitigation impact mechanism, the core results when considering the SO, ETS program are
still robust (Appendix Table 4).

Second, China’s State Council has set CO, emission reduction targets for each province
in both the 12" FYP (2011-2015) and the 13® FYP (2016-2020) for controlling greenhouse gas
emissions. Provincial emission control targets may further affect the performance of power plants
in different provinces. Therefore, we additionally include the variable Co27arget in our model to
control for the impact of this work plan, which is constructed based on the provincial target rate for
reducing CO, emissions per unit of GDP2. Our main results when considering the provincial CO,
emission reduction targets are consistent (Appendix Table 5).

C. Adopting different model specifications

In this paper, the explained variable costeff refers to cost efficiency, which is censored
data ranging from O to 1. A potential concern lies in that an ordinary regression model may omit
the problem of censored data; therefore, we use the Tobit model to test the robustness of the cost
efficiency results in Appendix Table 6 columns (1)—(4). Moreover, since we have control of both
the plant-level and provincial-level covariates, a possible problem is that costeff is estimated at
plant level, and the plant-level characteristics may cause a multicollinearity problem in the DID
analysis. Therefore, we drop the plant-level covariates and use provincial-level controls to estimate
the treatment effect on cost efficiency. The results are shown Appendix Table 6 columns (5)—(8). The
results in Appendix Table 6 support the robustness of our analysis.

5. FURTHER ANALYSES OF FIVE PILOT PROVINCES
5.1 Synthetic control method

In the above analysis, we discussed the treatment effect of the ETS on all pilot provinces. In
this section, we aim to further specify the ETS effect on cost efficiency in different pilot provinces.
We focus on the provincial effect of cost efficiency as it is more reflective of the internal upgrading
activities undertaken by the enterprises. It is considered more important that thermal power
enterprises achieve consistent cost savings.

To undertake this provincial analysis, we employ the synthetic control method proposed
by Abadie and Gardeazabal (2003). This method has several advantages. First, the SCM method
helps to address selection bias by constructing a counterfactual unit for each treated unit.
Targeted evaluation on different treated units is thus allowed to evaluate heterogeneity in policy
implementation. Second, the optimal weight used to construct the control counterpart is determined

2. As there is no specific provincial-level target for CO2 emission reduction in the 11th Five-Year Plan (2006-2010),
Co2Target before 2011 is set to be 0.
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by the data and their matching results, which avoids the bias from subjective choice. Third, as we
control for plant-level covariates when conducting the DID analysis, the SCM helps to address the
potential multicollinearity problem in the traditional DID model. Therefore, we further utilize the
SCM method to measure the treatment effect of the ETS on cost efficiency in different provinces.

Following Abadie et al. (2010), we presume that there are J+/ units, with the first unit being
treated and the remaining units making up the control pool. &,, is the estimator of the intervention
effect for treated unit at time 7. y;, is the observed outcome for the treated unit in period 7. Supposing
that 7'is the number of whole time periods and 7} is the pretreatment period, for ¢ > T;, the treatment
effect can be given as follows:

&lt:yllt_j}ll\tl (5)

where y,' is the supposed counterfactual outcome if the treated unit was not treated. This synthetic
counterfactual of a treated unit is constructed by combining the other control units linearly in the
SCM method. For ¢ > T,, y, can be estimated with:

J+1

B = ijy Jt ©)
=

where W* is an optimal vector of weights to minimize the distance between the preintervention
covariates for the treated unit and control units. If X, is a vector of pretreatment covariates for the
treated unit and X is a vector of the same covariates for the untreated units, the discrepancy between
X, and X,W can also be expressed as:

X, - X, W ||, = \/(x, ~X,W) V(X, - X,W) )

where V can be considered to be some symmetric and positive semidefinite matrix to get the
minimum root mean squared prediction error (RMSPE). In other words, it helps the synthetic control
unit to approximate the outcome trajectory of the treated unit during the pretreatment stages, thus
minimizing the preintervention discrepancy between the treated and control units.

5.2 Provincial treatment effect

Figure 2 provides the cost efficiency between the treated power plants and synthetic control
plants in five pilot provinces, showing that the trend for the ETS treatment effect is similar in pilot
provinces such as Guangdong, Shanghai and Tianjin. Initially it shows a slight drop in 2011 and then
it gradually increases and surpasses the cost efficiency of synthetic control plants. The positive effect
is enlarged after ETS implementation, especially over the period of 2013-2015, and contracted
between 2016 and 2017. The different outcome between announcement and implementation stage
is consistent with the previous baseline analyses, which showed that the average treatment effect
is initially negative after the ETS announcement and then reverses to be significantly positive
following the implementation of the ETS in 2013, though the former effect is not significant.
Therefore, these analyses again illustrate that the announcement of the ETS leads to preparation
for emissions reduction in the pilot power plants, which results in additional costs and temporary
loss of cost efficiency. The reversal of the trend occurred after the pilot plants had adapted to the
policy intervention by collecting enough information and upgrading their devices and technology,
eventually benefitting from the implementation of the ETS policy. Moreover, the reduction of positive
treatment effect in 2016 may due to China’s announcement to establish a national carbon emissions
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trading market, which is accompanied by the refinement of relevant market rules and regulations.
The new reaction and adjustment of the power plants may affect the continuous improvement of
cost efficiency. The rebound of the positive treatment effect in 2017 may indicate that the ETS could
provide an incentive for long-term cost efficiency growth.

Our results imply that the cost efficiency of pilot plants could be improved due to active
internal reform measures, pilot plants without the ETS intervention are thus assumed to be have
less incentive for upgrading technology and optimizing operation. The drop of the fitted synthetic
control curve in Figure 2 provides some evidences that the cost efficiency of synthetic control
units decreases compared with treated plants. This may result from two potential reasons. First,
considering the increasing cost burden of power plants in China, the reduction of efficiency could
be due to the lack of active efforts for improving production and operational capacity (Zhang and
Adom, 2018). Second, with the development of technology especially in pilot power plants, the
optimal cost efficiency is supposed to be higher and lead to the lower cost efficiency of power plants
in non-pilot provinces.

The ETS treatment effect of each separate pilot province is then compared to determine the
significance of the treatment effect. We undertook the placebo test to test the validity of the synthetic
control analysis. Appendix Table 7 shows the p-values that denote the proportion of placebo effects
from the control units that have posttreatment RMSPE at least as great as the treated unit (Galiani
and Quistorff, 2017). The comparison of the significance of the provincial treatment effect reveals
that the ETS significantly improves cost efficiency in Shanghai, Guangdong, and Tianjin; however,
there was no positive effect on cost performance of thermal power plants in Chongqing and Hubei.

There are several potential reasons for the difference. According to information on carbon
exchanges in the pilot provinces, the carbon market in Chongqing is the least active, with lower
trading volume and poorer transaction transparency. The allowance allocation in Chongqing is
based on firms’ self-declaration and allows for ex-post adjustment, resulting in lower compliance
pressure. The compliance rate of the Chongging carbon market in 2013-2014 was only 70%, which
is much lower than the other pilots and supports the low ETS effectiveness in Chongqing. Given the
better trading volume and liquidity in the Hubei carbon market, the insignificant positive effect in
Hubei could be partially explained by our mechanism analysis. For example, for carbon dependence,
Hubei is the only pilot province in central China and its heavy industrial structure means it has the
highest carbon intensity among all pilots (Cao et al., 2021), which may increase its cost burden
when adapting to the carbon trading reform requirements and cause a low ETS effectiveness on cost
performance.

One main assumption of SCM analysis is that the intervention has no effect on the cost
performance before the treatment period, which has been discussed in the event study analysis.
Another assumption is that the cost performance of the non-pilot units is not affected by the ETS
pilot policy intervention in the pilot provinces, known as the assumption of no interference between
units (Abadie et al., 2010). In the context of our analysis, several potential ways may result in the
violation of this “no interference” assumption. One concern is that the implementation of ETS policy
may raise the awareness of carbon reduction in non-pilot provinces and induce similar responsive
measures, contaminating the donor pool. Since the national unified carbon emissions trading market
was officially announced at the end of 2017, it is expected that the preparation of national carbon
emission trading would not severely affect the untreated power plants during the research period.
However, previous findings showed the exist spillover effects of ETS on improving the green total
factor productivity and reducing carbon emission in non-pilot cities and provinces (Li et al., 2022;
Yang et al., 2022; Zhu et al., 2022). Although there is no enough evidence indicating its influence on
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plant-level financial performance in non-pilot provinces, it is still possible that these factors could
contaminate the donor pool and further lead to underestimation of the cost efficiency improvement
for treated power plants. If this is what actually happens, our study provides a relatively conservative
estimate of the ETS policy effect. Another concern is that the power enterprises may choose the
strategy to transfer some high-polluting operation from plants in pilot provinces to those in non-
pilot provinces. This is not a serious concern as the power supply and demand situation within each
province were quite different, and the power plants need to strictly obey the local grid dispatch
regulations. Moreover, China’s inter-provincial power trading was not mature during our research
period, which makes it less possible for the trading or other similar coping strategies between power
plants. Therefore, it is expected that this concern would not seriously affect the results.

To additionally figure out the question that whether our SCM estimations could be driven
by chance, we then conduct placebo tests by considering cases that if we had treated other non-
pilot plants randomly instead of plants in pilot provinces. In the calculations undertaken in the
analyses above, we consider the characteristics of each separate power plant in the treated provinces.
Moreover, as a robustness check, we regard the power plants in the treated provinces as one unit;
specifically, we calculate the mean value of all variables and create a plant that represents the mean
status of all power plants in each treated province. We then adopt the SCM again and obtain the
placebo test results. The results are similar, in that there is significantly improved cost efficiency in
Guangdong, Shanghai, and Tianjin but not in Chongqing and Hubei (Appendix Figure 1).

5.3 Cost saving

Based on the results of the synthetic control method, Figure 3(a) shows the comparison
of the ETS treatment effect between different pilot provinces from 2011 to 2017. Specifically, we
calculate the average treatment effect of the ETS on power plants’ cost efficiency in each pilot
province from 2013 to 2017, as the treatment effect is statistically significant after 2013. The
estimated average annual cost efficiency improvement is 9.34 percentage points in Guangdong,
9.31 in Shanghai, and 5.76 in Tianjin. The cost saving from cost efficiency improvements can be
speculated using the following equation:

Cost savings = Cost efficiency improvement xTotal cost

The cost savings calculated using the above equation are shown in Figure 3(b). As the treatment
effect of Hubei is not statistically significant, the cost savings of Chongqing and Hubei are shown
in grey in Figure 3(b). The cost saving for thermal power plants in each pilot is different when both
total cost and cost efficiency improvement are considered. The carbon emission trading achieves
annual cost savings of about 0.33 million RMB for each thermal power plant in Guangdong, which
accounts for 9.11% of the total cost, 0.52 million RMB per plant (8.90% of total cost) annually in
Shanghai, and 0.28 million RMB per plant (5.56% of total cost) annually in Tianjin. In sum, the
ETS-induced cost efficiency improvement of power plants in these three pilot provinces saved a total
of around 5.95 million RMB per year. Therefore, the total cost savings in Shanghai, Guangdong, and
Tianjian during the five-year period 2013-2017 was approximately 29.75 million RMB, accounting
for 29.94% of the total cost in 2017.

It should be noted that the cost saving discussed above is only the direct economic cost
saving based on the plant-level analysis of cost efficiency. Other benefits, such as environmental
and health benefits of emission reductions, and employment benefits may also be significant. For
example, Guo et al., (2020) estimated that China’s ETS has led to the reduction in production-based
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emissions by 6.5 Mt CO, and consumption-based emissions by 4.6 Mt CO, over the post-treatment
period of 2011-2015. Assuming that one ton of CO,reduction could generate $147 in the national
average health co-benefits (Wang et al., 2021), the health co-benefits with ETS implementation
could be estimated as approximately $1.6 billion. Moreover, Zhang and Zhang et al. (2020) found
the implementation of China’s ETS in 2013 has increased annual rural residents’ income by about
752.6 RMB and increased the ratio of rural employment to total employment by 2.35% over the
period of 2014-2017, which accounts for 9.5% of the income of rural residents and 7.11% of rural
employment. Therefore, the actual cost saving of ETS including those from indirect benefits could
be much larger than our estimates.

6. DISCUSSION AND CONCLUSION

This study examined the effects of China’s carbon emissions trading policy on the production
costs of thermal power plants. We conducted a DID analysis between plants in pilot and non-pilot
provinces after the ETS announcement and also after the ETS formal implementation. The results
showed that China’s ETS policy seemed to initially marginally reduce power plants’ cost efficiency
following the announcement in 2011, and then significantly improve the cost efficiency after the
implementation in 2013. We also discussed under what conditions the ETS pilot was effective in
saving power plants’ costs. It was found that a higher degree of marketization, stricter environmental
policy enforcement, and lower carbon dependence help to increase the effectiveness of the ETS on
cost performance. Provincial results from synthetic control analysis also show that cost efficiency
was enhanced for power plants in Shanghai, Guangdong, and Tianjin, leading to significant cost
savings for those pilot power plants. However, this positive effect was not found for pilot plants in
Chongqing and Hubei provinces.

Based on our analysis, there are several implications for promoting carbon market reforms.
First, carbon emission trading is a promising instrument for use in achieving the carbon neural
commitment in a cost-effective way. As China’s carbon ETS for the power sector has been expanded
nationwide since 2021, the future national market is expected to witness even larger gains due to the
enhanced cost efficiency of participants. The specific ETS implementation, such as the quotas and
how they are allocated, need to be carefully considered, as participants’ enthusiasm for emissions
reduction should be encouraged to the greatest extent.

Second, different regional conditions need to be considered in the governance of the
carbon emission trading market. Specific measures are needed to promote regional marketization
development, conduct strict environmental enforcement, and develop low-carbon industries to
reduce carbon dependency, as they support the carbon trading system. Meanwhile, considering the
significant role of these different localized factors, it is suggested to pay more attention on the
effectiveness of the national ETS in the western and central region of China where the economy
is not well developed but carbon emissions are heavy. It is necessary to consider their cost burden
and introduce more incentive tools and risk management tools that could encourage polluters to
participate and help them to create a virtuous cycle. In turn, participants’ positive carbon reduction
actions could accelerate the transformation of the whole industry structure.

Third, for entities involved in the carbon ETS, our study sends a positive signal that active
participation in the trading market is beneficial for their long-term sustainability. Specifically, ETS
requirements not only help to keep carbon emissions within necessary limits and address corporate
social responsibility, but also lead to potential higher cost efficiencies through application of efficient
and clean technology, equipment, or procedures. Therefore, early and active participation in the
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carbon trading market is a key measure for firms to achieve a balance between commercial value
and social value.

This research is limited in several aspects and presents several directions for future
research. First, we estimated the plant-level cost performance based on observed total cost and
calculated cost efficiency considering data availability. More detailed and precise measurement of
the internal processes for cost efficiency change in pilot plants can be explored. Second, although we
have explored the potential cost strategies of power plants, firm-level response strategies of power
enterprises have not been discussed. Future studies could combine the specific cost strategy of the
power enterprises under the carbon ETS policy to better identify their response actions. Third, this
study only discussed the cost savings of ETS implementation before 2017 due to the lack of more
detailed plant-level data. With the development of China’s ETS, the change in carbon price and
carbon quotas could affect the cost performance of power plants. It is also worth identifying whether
cost efficiency improvements could be sustainable in the long term, and how long this benefit will
last in offsetting part of the carbon compliance cost.
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APPENDIX S1: TABLES

Appendix Table 1: Parallel trend test

DV=Total cost

DV=Cost efficiency

(1) (2) (3) (4) (5) (6) (7 () ) (10)
Treatment * Postyyy; 0.0629 -0.0261
(0.0629) (0.0236)
Treatment * Postyys 0.0381 -0.0222
(0.0652) (0.0254)
Treatment * Postyygo 0.0124 -0.0215
(0.0740) (0.0288)
Treatment * Posts 0.0013 -0.0249
(0.0834) (0.0290)
Treatment *Pretrend 0.0055 —0.0037
(0.0226) (0.0108)
Constant 0.8740 0.8222 0.9138 0.9777 7.3490%* 1.0830 1.1319 1.1626 1.2070  -0.4438
(2.8835)  (2.9538) (3.0089) (3.0631)  (3.0079)  (0.8909) (0.9113) (0.9318) (0.9444) (1.4819)
Observations 1102 1102 1102 1102 460 1102 1102 1102 1102 460
Within R? 0.9236 0.9236 0.9236 0.9236 0.8410 0.0920 0.0921 0.0924 0.0930 0.3238

Note: This table reports placebo test of different policy year and parallel trend test on total cost and cost efficiency for pilot power plants.
Cols.1—4 and cols. 6-9 report placebo tests for total cost and cost efficiency, respectively. Columns 5 and 10 report the trend of total cost and
cost efficiency during the pretreatment period, respectively. Plant-level controls include lnoutput, Inpe, Inpl, kir and Inerso2. Provincial con-
trols include Ipergdp, indratio, fdi_r, lindinvest, epustd, market, Ipenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled.

Standard errors clustered by plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01

Appendix Table 2: Robustness analysis with PSM-DID method

DV=Total cost

DV=Cost efficiency

Baseline Marketalization ~ Penalty Carbongdp Baseline ~ Marketalization ~ Penalty Carbongdp
Impact Mechanism [€))] 2) 3) 4) (5) (6) (7 (8)
ETS ounce 0.1146 0.1069 0.1259* 0.1390* —0.0570%* -0.0561* —0.0596** —0.0553*
(0.0709) (0.0695) (0.0720) (0.0735) (0.0285) (0.0282) (0.0285) (0.0305)
ETS piement —0.1450%* 1.6082%* 0.5908**  —0.3351%* 0.0406%* -0.1713* —0.1265%* 0.1235%%#%*
(0.0690) (0.6820) (0.2855) (0.1552) (0.0198) (0.0973) (0.0738) (0.0460)
ETS,piement? —0.1702%%* —0.0877** 0.2500 0.0206* 0.0199%* —0.0990%**
Mechanism (0.0687) (0.0343) (0.1578) (0.0111) (0.0086) (0.0443)
Plant-level controls Yes Yes Yes Yes Yes Yes Yes Yes
Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Constant -3.4167 -3.3104 -3.5079 -3.2194 1.8153%* 1.8025%* 1.8360%* 1.7814%*
(2.7139) (2.6308) (2.7048) (2.5842) (0.7849) (0.7725) (0.7903) (0.7851)
Observations 718 718 718 718 718 718 718 718
Within R? 0.9294 0.9307 0.9302 0.9310 0.1573 0.1599 0.1626 0.1632

Note: This table reports robust estimates of ETS effect on total cost and cost efficiency for pilot power plants by adopting the PSM-DID
method. The pretreatment value from 2006 to 2010 of Ipergdp, indratio, fdi_r, lindinvest and carbongdp are selected as covariates in the
propensity matching procedure. Cols.1-4 report the estimate for total cost and cols.5-8 report the estimate for cost efficiency. Plant-level
controls include lnoutput, Inpe, Inpl, kir and Inerso2. Provincial controls include market, Ipenalty, ltotalpat and epustd. Year and plant fixed
effects are controlled. Standard errors clustered by plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table 3: Propensity score matching results

Covariates Treated Control Yobias t p>t

Before matching

Ipergdp 10.621 10.030 130.50 11.18 0.000
indratio 0.430 0.444 -26.00 -1.93 0.055
fdi_r 0.002 0.001 72.70 6.37 0.000
lindinvest 12.068 12.171 -15.20 -1.28 0.202
carbongdp 1.523 3.383 -142.30 -9.84 0.002
After matching

Ipergdp 10.388 10.396 -1.80 —-0.11 0.915
indratio 0.441 0.440 2.30 0.16 0.874
fdi_r 0.002 0.002 -1.70 —-0.12 0.904
lindinvest 12.215 12.094 18.00 1.13 0.261
carbongdp 1.717 1.711 0.50 0.06 0.948

Appendix Table 4: Robustness analysis with considering effect of SO, emission trading

scheme
DV=Total cost DV=Cost efficiency

Baseline Marketalization Penalty =~ Carbongdp  Baseline  Marketalization  Penalty Carbongdp
Impact Mechanism (1) 2) 3) 4) 5) (6) (@) 8)
ETS nounce 0.0082 0.0072 0.0132 0.0121 -0.0237 —0.0235 -0.0248 —-0.0248

(0.0697) (0.0703) (0.0698) (0.0701) (0.0274) (0.0275) (0.0274) (0.0275)
ETS,piement -0.0961* 1.4250%%* 0.5513* -0.3325%%  0.0348%* —-0.1969* -0.1033 0.1027%*

(0.0532) (0.6926) (0.2803) (0.1589) (0.0164) (0.1142) (0.0728) (0.0439)
ETS,piement? —0.1485%* -0.0767** 0.2848* 0.0226* 0.0163* -0.0819%
Mechanism (0.0688) (0.0340) (0.1691) (0.0120) (0.0086) (0.0448)
SO2ETS —0.61817%%#* —0.60277##* —0.6209%#%  —0.6559%* 0.0625 0.0602 0.0631 0.0734

(0.2237) (0.2181) (0.2223) (0.2260) (0.0945) (0.0939) (0.0944) (0.0953)
Plant-level controls Yes Yes Yes Yes Yes Yes Yes Yes
Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Constant 1.6678 2.0026 1.5645 1.4471 1.0753 1.0243 1.0973 1.1387

(2.9878) (2.9028) (2.9890) (3.0162) (0.9297) (0.9250) (0.9297) (0.9310)
Observations 1102 1102 1102 1102 1102 1102 1102 1102
Within R* 0.9640 0.9643 0.9642 0.9641 0.3210 0.3223 0.3227 0.3231

Note: This table reports robust estimates of ETS effect on total cost and cost efficiency for pilot power plants after considering effect of

SO, emission trading scheme. Cols.1—4 report estimates for total cost and Cols.5-8 report estimates for cost efficiency. Plant-level controls
include lnoutput, Inpe, Inpl, kir and Inerso2. Provincial controls include Ipergdp, indratio, fdi_r, lindinvest, epustd, market, Ipenalty, ltotalpat
and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by plant are reported in parentheses, * p<0.1, ** p<0.05,
*#k p<0.01..
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Appendix Table 5: Robustness analysis with considering effect of provincial CO, emission

reduction targets

DV=Total cost

DV=Cost efficiency

Baseline Marketalization Penalty Carbongdp  Baseline  Marketalization ~ Penalty Carbongdp
Impact Mechanism (1) 2) 3) (@) [®)] (6) 7 (8)
ETS ounce 0.0897 0.0888 0.0930 0.0933 -0.0414 —0.0412 —0.0421 -0.0424
(0.0638) (0.0639) (0.0643) (0.0644) (0.0273) (0.0274) (0.0274) (0.0275)
ETS,piement —0.0992* 1.4259%* 0.4873* —0.3287**%  0.0354%* —0.1971* —-0.0894 0.1019%*
(0.0536) (0.6812) (0.2517) (0.1459) (0.0154) (0.1099) (0.0696) (0.0405)
ETS piement* —0.1489%* —0.0695%%* 0.2765* 0.0227* 0.0148* —0.0801*
Mechanism (0.0675) (0.0304) (0.1534) (0.0116) (0.0081) (0.0414)
CO2reduce —0.0876%** —0.0876%** —0.0862##* —0.0873***  (0.0190%* 0.0190%* 0.0187%* 0.0189%*
(0.0299) (0.0299) (0.0299) (0.0299) (0.0075) (0.0075) (0.0075) (0.0075)
Plant-level controls Yes Yes Yes Yes Yes Yes Yes Yes
Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Constant 0.9028 1.2637 0.8316 0.6956 1.1547 1.0997 1.1699 1.2147
(2.8960) (2.8189) (2.8955) (2.9180) (0.9157) (0.9124) (0.9161) (0.9167)
Observations 1102 1102 1102 1102 1102 1102 1102 1102
Within R? 0.9265 0.9272 0.9269 0.9268 0.1071 0.1088 0.1089 0.1097

Note: This table reports robust estimates of ETS effect on total cost and cost efficiency for pilot power plants after considering effect of
provincial CO,emission reduction targets in China’s 12 and 13" Five-Year Plan. Cols.1-4 report estimates for total cost and Cols.5-8 report
estimates for cost efficiency. Plant-level controls include lnoutput, Inpe, Inpl, kir and Inerso2. Provincial controls include Ipergdp, indratio,
fdi_r, lindinvest, epustd, market, Ipenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by

plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01.

Appendix Table 6: Robustness analysis with different model specifications

Tobit model Tobit model without plant-level control
Baseline ~ Marketalization ~ Penalty Carbongdp  Baseline = Marketalization Penalty Carbongdp
(1 (2) 3) (4) (5) (6) (7) 3)
ETS srnounce -0.0237 -0.0235 -0.0248 —-0.0248 -0.0196 -0.0197 —-0.0207 -0.0207
(0.0259) (0.0259) (0.0259) (0.0260) (0.0235) (0.0236) (0.0236) (0.0236)
ETSptement 0.0348%* —-0.1969* -0.1033 0.1027%* 0.0340* -0.1893* —0.0844 0.0967%*
(0.0155) (0.1078) (0.0688) (0.0414) (0.0195) (0.1087) (0.0703) (0.0455)
ETSpiemeni* 0.0226%** 0.0163%** —-0.0819* 0.0218* 0.0140* -0.0757*
Mechanism (0.0113) (0.0081) (0.0423) (0.0116) (0.0079) (0.0450)
Plant-level controls Yes Yes Yes Yes No No No No
Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Constant 1.1378 1.0844 1.1604 1.2121 0.4153 0.3595 0.4328 0.4765
(0.9578) (0.9522) (0.9572) (0.9591) (0.6959) (0.6956) (0.6939) (0.7006)
Observations 1102 1102 1102 1102 1102 1102 1102 1102
Log Likelihood 12352 1236.3 1236.6 1236.9 1219.3 1220.2 1220.2 1220.6

Note: This table reports robust estimates of ETS effect on cost efficiency for pilot power plants with Tobit model and Tobit model without
plant-level control. Cols.1—4 report Tobit estimates and cols.5—8 report estimates from fixed effect model without plant-level control
variables. Plant-level controls include Inoutput, Inpe, Inpl, kir and Inerso2. Provincial controls include Ipergdp, indratio, fdi_r, lindinvest,

epustd, market, Ipenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by plant are reported
in parentheses, * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table 7: Synthetic control method results

SCM Guangdong Shanghai Tianjin Chongging Hubei
2011 -0.0014 -0.0120 -0.0072 0.0107 -0.0182
0.9604 0.8278 0.6046 0.5556 0.3366
2012 0.0081 0.0022 0.0014 0.0165 -0.0222
0.7968 0.9733 0.9778 0.6889 0.5401
2013 0.0720%* 0.0653 0.0425 0.0249 —0.0243
0.0378 0.1813 0.2645 0.7778 0.8171
2014 0.1372%** 0.1357** 0.0829 0.0368 —0.0255
0.0073 0.0346 0.1538 0.8000 0.8817
2015 0.1543%** 0.1467** 0.0924 0.0513 -0.0265
0.0052 0.0365 0.1795 0.7778 0.9131
2016 0.0224%* 0.0352%** 0.0295%* 0.0092 0.0076
0.0470 0.0068 0.0279 0.5556 0.5767
2017 0.0810%* 0.0825%* 0.0407* 0.0014 —-0.0051
0.0110 0.0308 0.0992 0.9222 0.8079
Note: Synth_runner command in Stata were used to calculate the p-values of the placebo test.
Appendix Table 8: Stochastic frontier analysis results
Panel A: SFA estimations*®
DV=Total cost
(1) (2) (3)
Inoutput 0.2823%** 0.2553 %% 0.2724% %%
(0.0000) (0.0000) (0.0000)
Inpe 0.2940%** 0.1519%%* 0.1956%**
(0.0000) (0.0000) (0.0000)
Inpl 0.9259%*%* 0.9074%%%* 0.9538%**
(0.0000) (0.0000) (0.0000)
klr —0.4789%** —0.4769%** —0.4952%**
(0.0000) (0.0000) (0.0000)
Inerso2 0.3239%#* 0.1218%%** 0.1600%**
(0.0000) (0.0000) (0.0000)
Year fixed effect Yes Yes Yes
Mundlak’s specification No Yes Yes
Region fixed effect No No Yes
Constant 1.5233##% -0.3478 -0.4578*
(0.0000) (0.2454) 0.2911)
Lambda 4.1754%%* 7.5962 % 2.5824%kk
(0.0000) (0.0000) (0.0000)
Observations 1102 1102 1102
Panel B: Estimated efficiency®
tre trem treml
(1) (2) (3)
Mean 0.8140 0.8352 0.8353
Minimum 0.2182 0.4518 0.1485
Maximum 0.9875 0.9914 0.9848
Standard deviation 0.1149 0.1091 0.0958
Correlation® tre trem treml
tre 1 0.9298*** 0.8891%**
trem 0.9426%** 1 0.8477%%*
treml 0.9509%** 0.8926%%** 1

Notes: * Panel A reports results from SFA estimation. ® Panel B reports descriptive statistics of estimated cost efficiency.

¢ For the correlations, lower triangular cells report Pearson’s correlation coefficients, upper triangular cells are Spearman’s
rank correlation. ¢ As model (4) controls for the most fixed effects to address the possible omitted variable biases, we use
the estimate efficiency (treml) from this model for our cost efficiency analysis. In fact, in the unreported results, we find
that the use of alternative efficiency scores from other models do not affect our results. ¢ Standard errors are in parentheses,

# p<0.1, #* p<0.05, *+* p<0.01.
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APPENDIX S3: STOCHASTIC FRONTIER ANALYSIS.

The stochastic frontier model was originally developed by Aigner et al. (1977). The basic
formulation of the stochastic frontier model is:

y=pBX+v+u (A.1)

where y is the goal attainment measured by goal attainment, and #'X + v is the optimal frontier goal
pursued by the individual, such as the minimum cost or maximal production. £'X is the explanatory
part which determines the frontier and v ~ N [O, O'u2:| denotes the stochastic part. These two parts
compose the ‘stochastic frontier’. u denotes the inefficiency term, where

u=|U|~N[0,0,] (A2)

u also refers to the amount by which the individual fails to achieve the optimal goal (frontier).
In this study, we adopt stochastic frontier analysis to estimate the cost efficiency of thermal
power plants. The cost frontier is firstly constructed using the following equation:

TC:f(Y,X,P;ﬂ)e”e” (A.3)

where 7C is the minimum cost to produce the electricity power, and f (Y,X,P; ,B) denotes the
deterministic part for the cost frontier. Specifically, TC is the total cost, Y refers to output measured
by total electricity power generation, P is the price of inputs, including P, and P,, which are the
prices of capital (the installed power capacity) and labor (total employees), respectively, X is the
vector of explanatory variables that affect the expense cost, " is the stochastic component of the
cost frontier, and f (Y,X ,P; )ev denotes the optimal minimum cost and the deviation from this
optimal cost due to inefficiency is captured by e“. Following the linear function, we further control
the ratio of capital to labor (KL), SO, emission per unit of power generation (SO2), and fixed effects
of time (d,) and region (/;), which are measured by a vector of year dummies and region dummies’,
respectively. The modified equation can be written as follows:

InTC =In f(Y,P,,P,,KL,SO2,d,.L; )+ V +U (A4)

Moreover, we also adopt Mundlak’s (1978) specification here to control for potential
unobserved individual heterogeneity. Mundlak (1978) put forward a method to further consider
the correlation between explanatory variables and the individual specific term 77,. The unobserved
characteristics from the inefficiency term can thus be partially separated from the inefficiency term
by adding this auxiliary equation into the main frontier model.

=M+ (A5)
— 1 r

H=Mr=—> M (A.6)
T3

7, ~iid(0,07) (A7)

3. A set of region dummy variables are constructed based on the divisions of North China, Northeast China, East China,
South China, Southwest China, Central China, and Northwest China.
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where M, is the vector of explanatory variable, M; is a vector of the mean value for the respective
explanatory variables, and 7 is a vector of estimated coefficients. The persistent inefficiency term
is y, >0 after separating the time-invariant provincial factors that do not affect the inefficiency.
Provincial factors with short-run rigidities that have an impact on the inefficiency are captured by
1, >0.

The cost function with econometric specifications after adding the auxiliary equation is:

INTC =In f(Y,P,, P, KL,SO2,d,.L; )+ M.+, +,+V, (A.8)
By adopting the above equation, the overall cost efficiency can then be computed based on

estimation results as in the following equation:

. TC, o~
Costefficiency, = c exp(—Ui[) (A.9)

it

where TC} is the minimum expense cost of the ith plant at time 7 and TC, is the observed total cost.
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