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Utilities Included:  
Split Incentives in Commercial Electricity Contracts

Katrina Jessoe,a Maya Papineau,b and David Rapsonc

abstract

This paper quantifies a tenant-side “split incentives” problem that exists when 
the largest commercial sector customers are on electricity-included property lease 
contracts, causing them to face a marginal electricity price of zero. We use exog-
enous variation in weather shocks to show that the largest firms on tenant-paid 
contracts use up to 14 percent less electricity in response to summer temperature 
fluctuations. The result is retrieved under weaker identifying assumptions than 
previous split incentives papers, and is robust when exposed to several opportuni-
ties to fail. The electricity reduction in response to temperature increases is likely 
to be a lower bound when generalized nationwide and suggests that policymakers 
should consider a sub-metering policy to expose the largest commercial tenants to 
the prevailing retail electricity price.
Keywords: Principal-Agent Problem, Split Incentive, Contracts, Commercial 
Sector, Electricity
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1. INTRODUCTION

Separating the party who pays for energy from the one making decisions about electricity 
use has long been cited as creating incentives for energy over-consumption or underinvestment in 
energy efficiency in both the commercial and residential sectors. In the U.S., roughly 20 percent of 
commercial building occupants rent space with electricity bundled into their monthly rent. Under 
this contract structure commercial tenants face zero marginal cost of consuming electricity, creating 
an incentive to over-consume. The remaining 80 percent of tenants pay their own monthly utility 
bills, which will dampen the incentive for building owners to invest in energy efficiency if owners 
cannot capitalize on a rent premium for energy efficiency upgrades. These misalignments between 
tenant and landlord incentives may lead to overconsumption of energy and overproduction of pol-
lution that Pigouvian taxes are not well suited to correct (Jaffe and Stavins, 1994; Gillingham and 
Palmer, 2014). Given that the commercial sector accounts for over 35 percent of end-use electricity 
consumption in the U.S., the welfare costs from excess energy use may be substantial. Yet little 
evidence exists about the magnitude of these “split incentive” principal-agent problems in the com-
mercial sector.1

1.  More broadly, the existence of this principal-agent problem may justify programs or regulations to mandate energy 
efficiency, such as building energy standards or the use of firm-level energy saving obligations, also known as “white certif-
icates”, that have been adopted in several European countries (Stavins, 2011; Giraudet and Finon, 2015; Papineau, 2017).
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In this paper, we estimate an important component of the change in electricity use from 
switching commercial customers on electricity-inclusive rent contracts to tenant-paid utility con-
tracts, a distinction we refer to as “contract type”. We do this by evaluating how the relationship be-
tween electricity use and temperature (the temperature response gradient, henceforth “TRG”) differs 
by contract type. We illustrate how the structure of the rental contract may create two distinct split 
incentives, one on the intensive and another on the extensive margin of demand for energy services, 
which lead to different empirical predictions relating to the TRG. When considering the intensive 
margin, the TRG will be less steep under a tenant-paid than an electricity-inclusive, or “owner-paid” 
contract. This occurs because, for a given level of energy efficiency capital, firms on a tenant-paid 
contract pay a positive marginal price for electricity use while those on an owner-paid contract face 
a marginal price of zero. The second split incentive relates to owner incentives to invest in energy 
efficient durables. Under a tenant-paid contract, owners have little incentive to invest. Since (all else 
equal) lower investment in energy efficiency leads to a steeper TRG, firms located in buildings on 
tenant-paid contracts should exhibit a steeper TRG relative to owner-paid contracts. We refer to this 
as the extensive margin effect. These two split incentives impact the TRG in opposite directions in 
relation to contract type, allowing us to empirically test which split incentive (if any) dominates in 
our setting.

Results suggest that the intensive margin effect dominates among the largest firms. Tenant-
paid contracts induce considerable energy savings among these customers during the hottest sum-
mer months. For the largest decile of firms, switching from an owner-paid to tenant-paid utility 
contract would reduce electricity use by roughly 3 percent over the course of a year and up to 14 
percent in the summer months. The annual savings among large consumers are comparable to pop-
ular energy conservation measures such as home energy reports, which produce average savings of 
approximately 2 percent (Allcott, 2011). Furthermore, the savings occur at times when the value of 
electricity is likely to be high: during the hottest days of the year. Our finding that the largest cus-
tomers are most responsive to contract type corroborates recent evidence from the residential sector 
in Sweden (Elinder et al., 2017). In contrast, contract type does not measurably impact consumption 
decisions for the smallest 90 percent of commercial customers. These results are consistent with 
profit-maximizing firms facing adjustment costs in electricity consumption, such that a relatively 
small absolute value of bill savings, among smaller firms, would not warrant conservation behavior.

Our empirical approach exploits the differential effect of an exogenous weather shock on 
electricity use across firms on an owner versus tenant-paid contract. To do this we make use of 
cross-sectional variation in local weather exposure within a calendar billing month generated from 
the staggering of electricity billing periods across customers. We combine these weather data with 
monthly bills from 1,074 commercial firms serviced by a Connecticut electric utility between Oc-
tober 2007 and May 2011, and property-level information on fixed observables including whether 
the tenant or landlord pays the electric bill. This panel data set allows us to examine the differential 
impact of local weather shocks on electricity use across contract types, controlling for potential 
selection into contract type based on firm or fixed building attributes. A “levels” comparison of elec-
tricity use across contract type would be biased if firms on owner- and tenant-paid contracts differ in 
ways that are correlated with energy use. Focusing instead on the TRG across contract type captures 
the sensitivity of electricity consumption to fluctuations in temperature and allows us to control for 
a rich set of variables that may correlate with selection into contract type, thereby permitting iden-
tification under weaker assumptions.

Our identifying assumption is that selection into contract type is unrelated to unobservable 
electricity demand drivers that are correlated with the TRG. We present three pieces of empirical 
evidence that support this assumption. First, motivated by recent work demonstrating that the elec-
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tricity response to temperature shocks meaningfully differs across certain building attributes, we 
directly control for the possibility that the TRG is heterogeneous in observable building attributes 
(Novan et al., 2017). After controlling for interactions between temperature and attributes such as 
building age and industry type, our results are unchanged. Second, we use a change to a Connecti-
cut metering regulation. This change was legislated after the end of our sample period and altered 
building owners’ ability to select into contract type. It provides us with an opportunity to examine 
the TRG of firms located in buildings that switched contract types shortly after the change, and to 
test whether they exhibit a differential response gradient. They do not. Third, we assess the effect 
of potential correlations between any remaining unobservable characteristics and the treatment, as 
described in Oster (2017). This places bounds on the potential bias from selection on unobservables. 
Each of these tests exposes our identifying assumption to an opportunity to fail, and the results of 
each test support our main conclusions.

Given the size of the firms responsive to contract type, the estimated treatment effect trans-
lates into significant costs from misaligned incentives. Using very conservative assumptions, we 
find that if incentives were aligned among the largest decile of commercial customers nationwide, 
total energy savings would be roughly one and a quarter times the savings from solving the split 
incentives problem for the entire U.S. residential electricity sector. The magnitude of the treatment 
effect and the relative size of large commercial firms are the primary factors leading to this result. 
Though the number of commercial customers affected by the split incentives problem is small rel-
ative to residences, these customers use much more energy. Thus, addressing the commercial split 
incentive problem requires a fraction of the contact points, while likely leading to greater energy 
savings. Our estimates imply greenhouse gas reductions of between 615-1200 thousand tons of CO2 
per year, or (to give a sense of scale) roughly 3.3 to 6.6 times the average annual savings from yearly 
Weatherization Assistance Program retrofits. These savings may be achievable at a relatively low 
cost. When we compare the cost of retrofitting units with sub-meters (to allow switching to tenant-
paid utility bills) with the estimated annual bill savings amongst the largest customers, the payback 
period is less than one year. One caveat to note is that our results are identified based on the TRG. 
A switch from owner to tenant-paid contracts, and the accompanying disincentive for landlords to 
invest in energy efficiency, may also alter the level of electricity use. While many building-level 
energy efficiency investment choices available to landlords affect the TRG, we cannot rule out that 
these “level” effects may lead to a consumption increase and mitigate or even overwhelm the TRG 
savings we identify relating to the temperature gradient.

Despite the robustness of our results, identification of our main effect arises from the be-
havior of 110 large firms, 19 of whom are on owner-paid contracts. Our need to lean on a small 
sample raises the possibility that our study may be under-powered and that our results may be driven 
by outliers. While our research setting prevents us from completely nullifying these concerns, we 
present evidence that allows us to reject the hypothesis that our findings are driven by a single out-
lier among the largest owner-paid firms in our sample.

This work makes four main contributions to the academic literature and environmental 
policy discussion. First, compared to the residential setting where a growing literature points to 
both the potential and limitations of energy efficiency and contracting solutions (Gillingham et al., 
2012; Hassett and Metcalf, 1999; Fowlie et al., 2015; Elinder et al., 2017), little is known about 
the commercial setting. We provide a commercial counterpart to existing residential estimates on 
the split incentives problem. Second, our identification strategy makes several advances towards 
credibly estimating the magnitude of the split incentives problem. The response gradient, tempera-
ture-characteristic interactions, contract switcher controls, and Oster bounds each provide support 
for the identifying assumption and extend the existing literature on split incentives. Third, our re-
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sults reveal substantial heterogeneity in firm responsiveness to contract type and point to the impor-
tance of looking beyond population average treatment effects. Lastly, our results suggest a targeted 
prescriptive policy of tenant-paid contracts among large firms may be a net beneficial greenhouse 
gas abatement strategy.

The rest of the paper is organized as follows. Section 2 presents our conceptual framework 
and our predictions about the TRG among tenant- and owner-paid utilities under the two potential 
split incentives. Section 3 reviews our empirical setting and presents our data. Section 4 discusses 
identification and our empirical specifications. Section 5 presents our empirical results and policy 
implications. Section 6 briefly concludes.

2. CONCEPTUAL FRAMEWORK

The two forms of the split-incentive principal-agent problem introduced in the previous 
section translate into simple empirical predictions, which we articulate in more detail in this section. 
The structure of a rental contract shifts both the responsibility for electricity bill payments (the 
intensive margin) and the extent of investment in energy efficiency (the extensive margin). These, 
in turn, affect how we would expect electricity consumption to change in response to an exogenous 
demand shifter such as temperature fluctuations. Our framework highlights that when the intensive 
margin dominates, tenant-paid rental contracts will lead to electricity consumption levels that ex-
hibit a weaker positive covariance with temperature relative to owner-paid contracts. In contrast, 
if the extensive margin dominates, the opposite holds: owner-paid contracts create incentives that 
will result in a lower consumption response to temperature changes. Our setting allows for a test of 
which of these channels dominates.

2.1 Set-up and Notation

Tenant k’s electricity consumption, measured in kilowatt-hours (kWh), in a building owned 
by landlord j is given by = ( , , ( ))kY f E T P W . Electricity use depends on energy efficiency capital, 
E, temperature, T, and the price per kWh of electricity paid by tenant k, ( )kP W , which is a function 
of contract type W. Under standard conditions, electricity consumption is decreasing in P and E, 
and increasing in T.2 For any building there are two potential contract types offered: an owner-paid 
contract, = 0W , and a tenant-paid contract = 1W . Under the former ( ) = (0) = 0k kP W P , and under the 
latter ( ) = (1) =k kP W P p, where p is the retail price of electricity. When choosing where to rent com-
mercial space, tenants choose the contract type and the capital characteristics of a building. Con-
ditional on these decisions, which are assumed to be fixed in the short-run, tenants make monthly 
decisions about electricity use.

2.2 Competing Split Incentive Hypotheses

Our empirical predictions relate to the temperature response gradient (TRG): ∂
∂
Y
T

. The TRG 

reflects the sensitivity of electricity consumption to fluctuations in temperature, and it has two at-
tractive features. First, since temperature fluctuations are exogenously experienced by tenants, this 
variation is an appealing source for identification. Second, as we will discuss, the TRG will differ as 
a function of contract type, W, along two margins: an extensive and an intensive one.

2.  These follow, respectively, from a downward-sloping demand curve, an assumption that rebound effects are less than 
100 percent in magnitude, and by restricting our attention to temperatures of 65F and above such that derived electricity de-
mand (via air conditioning) is increasing in temperature.
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Temperature interacts with energy efficiency and price to influence electricity use. The 
more energy efficient a building is, the less sensitive energy demand is to temperature increases (i.e. 

the TRG is shallower): 
2

< 0∂
∂ ∂

Y
T E

. This intuition is supported by recent empirical work demonstrat-

ing that the electricity response to temperature shocks is decreasing in the stringency of building 
energy codes (Novan et al., 2017). The TRG will also be dampened at higher prices, all else equal. 
This follows from the costs associated with increasing air conditioning as temperature increases and 

as the tenant pays a higher price for electricity: 
2

< 0∂
∂ ∂ k

Y
T P

. The incentives created by contract type 
flow from these pieces of intuition.

When = 1W , tenants pay p > 0 for every kWh of electricity they use. In contrast, under 
an owner-paid contract, the marginal price tenants pay for electricity equals 0. Because of this dif-
ference in prices, tenant k’s TRG will be shallower under a tenant-paid than under an owner-paid 
contract, all else equal (including E). Our first empirical prediction follows.

Prediction 1:

, >0 , =0

<∂ ∂
∂ ∂E p E p

Y Y
T T  (1)

The level of E may also be expected to change with contract type, and this will have a 
distinct effect on the TRG. Consider landlord j’s decision to invest in energy efficiency capital. 
Landlord j chooses E to maximize profits from the rental of commercial units,

max = ( ) ( ) ( ) .π − −j jE
R E P W Y E rE

Rental revenues denoted by R depend on energy efficiency capital E, where we assume that rents are 
weakly increasing in E. Total costs comprise the electricity bill, ( ) ( )jP W Y E , which is a function of 
the price per kWh of electricity paid by landlord j and the quantity of electricity consumed by the 
tenant. Total costs also include the costs to purchase energy efficiency capital, where we assume the 
cost per unit of capital is r. Under differentiability, the landlord chooses a quantity of E such that

( ) = .∂ ∂
−

∂ ∂j
R YP W r
E E

 (2)

The landlord chooses to invest in energy efficiency capital up to the point where the increase in 
marginal benefit from a unit of energy efficiency capital is equal to the marginal cost. The marginal 
benefit from energy efficiency capital consists of two components: the increase in rents from addi-
tional energy efficiency capital and the reduction in the electricity bill from a decrease in electricity 
consumption.

Now suppose that a building with a landlord-paid contract structure is exogenously placed 
on a tenant-paid contract, = 1W . The tenants occupying this building will now pay a price p per 
kWh of electricity used, and the price paid by the landlord is ( ) = (1) = 0jP W P . As shown below, 
this reduces the incentive for a landlord to invest in energy efficiency because the landlord will no 
longer benefit from lower electricity bills after investing in energy efficiency, and equation (2) will 
simplify to

= .∂
∂

R r
E

 (3)
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If the landlord cannot obtain a rent premium that fully accounts for the electricity bill 
reductions from energy efficiency investments, her demand for energy efficiency capital will be re-
duced. This leads to the second split incentives problem: if tenant k is on a tenant-paid contract, the 
building owner will be disincentivized from investing in energy efficiency capital.

This outcome leads to our second prediction about the TRG and how it changes with con-
tract type. Let L denote a low level of E, and H denote a high level.

Prediction 2:

= , = ,

>∂ ∂
∂ ∂E L p E H p

Y Y
T T  (4)

If the split incentive effect is operating entirely through the extensive margin (i.e. holding 
electricity price constant), then tenant k’s TRG will be steeper if = 1W  than if = 0W . This prediction 
arises because of lower levels of investment in energy efficiency capital by landlord j in a tenant-
paid building.

The two split incentive effects set forth in predictions 1 and 2 represent competing hypoth-
eses about the TRG in tenant-paid contract buildings. These two effects are likely to occur simul-
taneously, such that any conservation benefit from a tenant paying their own energy bills could be 
mitigated or overwhelmed by building capital inefficiencies. Alternatively, in owner-paid buildings 
attenuation in the temperature gradient from investment in energy efficiency capital may be com-
promised or dominated by split incentives from the absence of a price signal for tenants. What we 
observe in our data is the net outcome of these two competing effects: a negative estimate for the 
impact of a tenant-paid contract on electricity consumption indicates that the intensive margin dom-
inates, whereas a positive coefficient indicates that the extensive margin dominates.

3. EMPIRICAL SETTING: BACKGROUND AND DATA

The split incentives literature goes back several decades and has used a number of different 
methodological approaches, from interviews with building industry professionals (Blumstein et al., 
1980), to engineering approaches combined with survey data (Murtishaw and Sathaye, 2006) and 
regression-based analyses (Levinson and Niemann, 2004; Davis, 2012; Gillingham et al., 2012; 
Krishnamurthy and Kriström, 2015; Elinder et al., 2017). Most recently, energy savings resulting 
from a switch from owner- to tenant-paid contracting in the residential sector have been documented 
in a quasi-experimental setting by Elinder et al. (2017). The split incentive problem resulting from 
tenant-paid electricity contracts, which reduce the incentive for landlord investment in energy ef-
ficiency capital, has been documented by Davis (2012), Krishnamurthy and Kriström (2015) and 
Myers (2015).

In the residential sector, existing studies have found that that the split incentive effect on 
aggregate consumption is of modest to moderate magnitude. Levinson and Niemann (2004) find that 
energy bills in the U.S. are 0.7 percent higher when apartment dwellers do not pay for heat. Elinder 
et al. (2017) find that electric energy consumption in a sample of Swedish apartments falls by close 
to 25 percent when tenants are shifted from owner-paid to tenant-paid electricity billing, where this 
effect is driven in large part by the highest-consuming households.3

3.  Another dimension to the principal-agent problem is less than efficient turnover from oil-fired to gas-fired boilers for 
residential heating in the northeastern U.S.(Myers, 2015). This outcome is consistent with asymmetric information over heat-
ing costs when tenants pay for heat. Inefficient turnover led to 37 percent higher annual heating costs in the 1990–2009 period.
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While the engineering literature has identified several channels through which split incen-
tives may affect commercial sector consumption, a gap remains in our understanding of its precise 
magnitude. One exception is Kahn et al. (2014), who find that energy consumption by tenants who 
pay their own energy bills is 20 percent lower compared to owner-paid units. However, as noted by 
the authors, this estimate reflects the effect of both contract type itself, and selection into contract 
type and buildings based on preferences for energy services.

In this study we focus on energy overconsumption that arises from air conditioning. The 
mechanism of control over air-conditioning by tenants is an important consideration in measuring 
firm-level response to contract type. Individual tenants in multi-tenant buildings may each exercise 
control over cooling in their units through zonal air-conditioning, which has been commercially 
available since the late 1950s (Meyer, 2006; Hoger, 2014; AHRI, 2017). In the commercial sector 
in the summer months, buildings can be over-cooled, leading to reduced comfort levels and an 
accompanying increase in electricity consumption of up to 8 percent (Derrible and Reeder, 2015). 
Equipment and electronics usage may also increase if there are poor incentives to conserve. Sanchez 
et al. (2007) find that office equipment and electronics—such as computers, personal space heaters 
and fans—account for up to 20 percent of annual building-level electricity consumption.

We evaluate our research questions within the jurisdiction of United Illuminating (UI), 
an investor-owned electric utility in Connecticut servicing customers across 17 counties. Figure 
1 shows its service territory. The regulations surrounding metering in Connecticut make it an ad-
vantageous setting in which to study the split incentives problem. To get a sense for the regulatory 

Figure 1: UI Territory

Notes: United Illuminating’s service territory. It offers electricity distribution services to 17 counties in Connecticut, an 
area totalling 335 square miles.
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landscape, consider the owner of a multi-tenanted building. Monitoring each tenant’s individual 
electricity use would require the installation of a sub-meter. However, prior to the summer of 2013 
the state prohibited the retrofitting of commercial and multi-family buildings with sub-meters. As a 
result, only buildings initially constructed with sub-meters in place could charge individual tenants 
for energy consumption.4 In all other buildings electricity consumption was master-metered (moni-
tored at the building level), and thus tenants signed owner-paid contracts. Since our analysis focuses 
on the time period 2007 to 2011, the presence of sub-meters in buildings is predetermined from 
the perspective of current owners and tenants. While tenants are able to choose buildings based on 
electricity contract type, doing so limited their choice set to buildings retrofitted with a sub-meter at 
the time of construction.

In 2013, new legislation passed by the Connecticut General Assembly eliminated the 
sub-metering prohibition (Hartford Business Journal, 2013). While we cannot directly test the effect 
of this change on electricity use due to the fact that it post-dates our electricity billing sample, the 
legislative change enables us to gain further insights into selection on contract type based on firm 
and building-level energy consumption characteristics.5

3.1 Data

We combine three data sets to form a panel of 39,233 observations on monthly electric-
ity use from 1,074 firms, and monthly weather from 32 unique zip codes.6 The first data source is 
monthly billing data provided by UI that reports account-level monthly electricity consumption 
(in kWh), peak monthly throughput or power (in kW), and monthly expenditure. These data also 
contain information on the industrial classification number—or NAICS code—of each account. The 
second source is the CoStar Group, a commercial-sector multiple listing service and database that 
includes building-level information on utility contracts and hedonic characteristics, such as year of 
construction, number of stories and total square feet. Third, we obtained average daily temperature 
data from the National Oceanic and Atmospheric Administration (NOAA).

Table 1 presents sample summary statistics on monthly consumption (in kWh), peak 
throughput in the highest demand hour within a billing month (kW), location, and industry, by con-
tract type, for the firms in our sample. The average customer (across contract types) spends about 
$695 a month on electricity; the average building is approximately three stories; and the primary 
industry is ‘Finance, Real Estate and Management’, which makes up about 50 percent of the sample 
among both contract types.7 The predominant share of accounts are located in office buildings (72 
percent), followed by industrial buildings (22 percent). In our sample, about 84 percent of firms pay 
their own electricity bill. The regional distributions are also similar across contract types, with about 
30 percent of observations in central cities, and the rest located in more suburban areas.

Our empirical analysis will seek to test whether the effect of contract type on electric-
ity use differs by firm size, given that absolute bill reductions from conservation will be concen-
trated among the largest firms. To measure firm size, we follow a similar approach to Aigner and 

4.  Several states have historically banned utility sub-metering, primarily for consumer protection reasons. The main con-
cern has been that owners would overcharge tenants for sub-metering services. States that have banned sub-metering include 
California, New Jersey, Massachusetts, and New York (Allen et al., 2007; NJAA, 2005; Cross, 1996).

5.  As we later discuss, we obtain data on contract “switchers” in the post-2013 period, where switchers are defined as 
firms located in buildings that changed their contract type from owner-paid to tenant-paid utilities, or vice versa. Altogether 
65 firms were located in one of these buildings.

6.  We use the terms customers, firms, and accounts interchangeably in this study.
7.  The ‘Industry’ category refers to NAICS codes in the Construction, Manufacturing, and Mining sectors.
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Hirschberg (1985), and use peak throughput or peak load. Explicitly, for each firm we measure 
peak throughput or power (in kW) in a billing month, and then take the mean of peak load across 
all billing months in the sample.8 Peak throughput provides one measure of firm size since it reflects 
the electric load requirements of electricity-using equipment.9 We then assign each firm to a firm 
size decile based on our mean peak load measure.10 Table 2 presents the sample summary statistics 
for firms in the top size decile, which includes 19 owner-paid firms and 91 tenant-paid firms. Mean 

8.  Peak throughput is the maximum power demand in the top hour of each billing month.
9.  Commercial equipment such as air conditioners and heat pumps are typically differentiated by size based on kW capac-

ity. For example, the American Society of Heating, Refrigerating and Air Conditioning Engineers categorizes air conditioners 
and heat pumps with capacity between 20-40 kW as small to medium commercial, and equipment capacities larger than 40 
kW as large commercial (ASHRAE, 2004).

10.  Our decision to analyze heterogeneity in the data by decile is guided by the simplicity of dividing the sample into ten 
sub-samples.

Table 1: Summary statistics and covariate balance in full sample

Notes: The table shows the mean, mininum value, maximum value and standard deviation for the observed covariates, for 
tenant-paid and owner-paid contracts, respectively. The last column shows the value of the t-statistic for the null hypothesis 
of equal means between the two contract types. The number of observations in each group in the t-statistic calculation is 
the number of firms in that group. Asterisks indicate a rejection of the null at the 5 percent level of significance.
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monthly electricity bills in this group are over $3,000. Buildings in this decile also tend to be located 
in much larger and somewhat taller buildings compared to the full sample.

Weather is measured as the number of cooling degree days (CDD) and heating degree days 
(HDD) in a zip code billing-month. To arrive at this observational unit, we begin by using daily 
temperature data collected from ten local weather stations to construct daily CDD and HDD at each 
weather station. CDD, which measure demand for space cooling services, are obtained by subtracting 
65 from the average Fahrenheit temperature on a given day with temperatures above 65, while HDD, 
which measure demand for space heating services, are obtained by subtracting the average Fahrenheit 
temperature on a given day from 65 on days with temperatures below 65. These daily weather station 
measures are used to compute daily zip code level weather. We use inverse distance weighting relative 
to zip centroids, and then sum within a billing-month in each zip code to obtain monthly CDD and 
HDD. Finally, for ease of coefficient interpretation, we divide cumulative CDD and HDD by total 
days in that billing period to arrive at average daily CDD and HDD by billing month.

This observational unit provides both cross-sectional and temporal variation in weather. 
One source of cross-sectional variation arises from temperature differences across the 32 zip codes 

Table 2: Summary statistics and covariate balance in top consumption decile

Notes: The table shows the mean, mininum value, maximum value and standard deviation for the observed covariates, for 
tenant-paid and owner-paid contracts, respectively. The last column shows the value of the t-statistic for the null hypothesis 
of equal means between the two contract types. The number of observations in each group in the t-statistic calculation is 
the number of firms in that group. Asterisks indicate a rejection of the null at the 5 percent level of significance.
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in UI’s service territory. This is made clear in Figure 2, which displays the daily temperature by 
zip code between October 2007 and May 2011. Despite the relatively small region, there is visible 
cross-sectional variation in daily temperatures with summer temperatures varying between 5 to 
10 degrees across zip codes. Variation in our weather variable also occurs because of differences 
in billing cycles—which denote the start date and end date of a billing period—across firms. In 
our sample, there are 16 unique billing cycles, where firm assignment to a billing cycle is based 
on geography. The staggering of billing cycles throughout a month provides a second source of 
cross-sectional variation in weather due to the fact that a hot day may be included in different billing 
“months” for firms on different billing cycles.11

Figure 2: Weather data variation

Notes: Average daily temperature in UI’s service territory between October 2007 and May 2011, at the zip code level. 
Despite the relatively small region, there is visible cross-sectional variation in daily temperatures, with summer tempera-
tures varying between 5 to 10 degrees across zip codes. Temperature variation within a zip code is also possible, due to 
differences in billing cycles across firms

4. EMPIRICAL FRAMEWORK

In this section, we begin by describing a simple levels comparison of electricity use across 
firms on owner- and tenant-paid contracts, and show that this approach will likely lead to biased 
estimates of the principal-agent problem. Next, we detail the empirical approaches that we deploy, 
the coefficient estimates that these retrieve, the identifying assumptions upon which our empirical 
approach hinges, and the robustness tests we implement.

11.  The assignment of billing cycles based on geography raises the possibility that they may be correlated with weather 
and contract type. We investigate this by testing if a systematic relationship between bill cycle and weather exists. A regres-
sion of weather on bill cycle shows that that the sixteen billing cycles are neither jointly nor individually significant in ex-
plaining cooling degree days or heating degree days (Appendix section A.1). Nevertheless, our empirical approach explicitly 
addresses this concern by conditioning on billing cycle.
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4.1 Average Treatment Effects: Levels Comparison

To examine the split incentives problem, we begin by comparing overall electricity use 
across firms on owner- and tenant-paid contracts conditional on a number of rich time controls using 
OLS,

1 2=α β β θ η γ ε+ + + + + +it zt zt i i t itY C H T t  (5)

The outcome variable is the natural log of electricity use for firm i in billing month t. The regressor 
of interest, iT , is an indicator variable that takes on a value of 1 if firm i is on a utilities excluded 
or tenant-paid contract, and 0 if it is on a utilities included or owner-paid contract. The variables 

ztC  and ztH  are average daily cooling and heating degree days for a firm assigned to billing month 
t and located in zip code z. We further condition on billing month fixed effects, denoted by γ t, and 
firm-specific time trends ηit.

Our coefficient of interest, θ , will reflect the average effect of contract type on monthly 
electricity use if assignment to a tenant-paid or owner-paid contract is independent of potential out-
comes. In our setting, this identifying assumption seems untenable, since the mechanism by which 
firms and buildings are assigned to contract type is likely correlated with fixed firm or building 
attributes that also determine electricity use. Tenants may sort into contract type based on electricity 
use, the elasticity of their electricity demand, or firm-specific attributes. Another possibility is that 
the presence of sub-meters in a building, and hence the ability for owners to implement tenant-paid 
contracts, may be co-determined with other fixed building attributes. In our setting, the decision to 
construct a building with or without sub-meters may coincide with other construction decisions such 
as insulation or window quality that affect electricity use. For these reasons, buildings and firms on 
tenant-paid contracts likely differ from those on owner-paid contracts in ways that affect electricity 
use. Failure to account for selection into contract type may result in a biased estimate of θ .

To empirically explore whether selection on fixed firm and building attributes may con-
found the estimation of equation (5), we compare firms on owner- and tenant-paid contracts across 
a number of observables that we hypothesize may be related to contract type. Tables 1 and 2 report 
mean characteristics for firms on tenant- and owner-paid contracts, as well as the t-statistic associ-
ated with the difference in means. Motivated by empirical specifications that focus on the princi-
pal-agent problem among all firms and only the largest customers, we present these comparisons for 
all firms in our sample, Table 1, and firms in the top demand decile, Table 2. As shown in Table 1, 
the covariates are balanced along the rich set of covariates we observe. However, a comparison of 
means across the top decile of firm size reveals that firms on owner- and tenant-paid contracts differ 
in building height and industry type. These balance statistics cast doubt on an empirical approach 
that relies on a levels comparison in electricity use across firms on different contracts, and lead us to 
forgo the formal estimation of equation (5).

4.2 Average Treatment Effects: Temperature Gradient

We propose an empirical approach that controls for the possibility that firms and buildings 
on owner- and tenant-paid contracts may be systematically different in fixed attributes that also 
affect electricity use. We begin with the hypothesis that if a split incentives problem exists, then it 
should be observed in differences in cooling across owner- and tenant-paid contracts.12 We test this 

12.  Most Connecticut commercial customers heat their units with natural gas or fuel oil rather than electricity (EIA, 
2012), leading us to hypothesize that electricity use will be most responsive to weather conditions in the summer months, 
when air-conditioning use is high.
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hypothesis by evaluating how electricity use differs in response to a 1 CDD increase across firms on 
an owner- versus tenant-paid contract, controlling for firm fixed effects and weather.

To evaluate the differential effect of a CDD on electricity use across contract type, we es-
timate a fixed effects model,

1 2 1 2= β β θ θ η γ γ ε+ + × + × + + + + +it zt zt i zt i zt t i t i itY C H T C T H L t  (6)

In this specification, the indicator variable for whether tenant i pays its own electric bill is interacted 
with each of the weather variables, ×i ztT C  and ×i ztT H . Importantly, this estimating equation condi-
tions on account fixed effects γ i. This allows us to control for all fixed firm and building character-
istics including those that affect electricity use and may systematically differ across contract type. 
We also condition on bill length, tL , defined as the number of days in a billing month, to account for 
differences in weather attributable to variation in bill length across billing months.

The coefficient, 1θ , reflects the differential effect of temperature increases on electricity 
use across firms on tenant- and owner-paid contracts. A natural interpretation of 1θ  is the change 
in demand for air conditioning among tenant-paid contract firms relative to owner-paid firms, in 
response to warmer temperatures, holding constant the existing building stock. To estimate this 
treatment effect, we exploit variation in CDD generated from the staggering of billing cycles, and 
compare how a firm on a tenant- versus owner-paid contract responds to this variation netting out 
fixed firm characteristics. This approach allows us to account for fixed building and firm attributes 
systematically correlated with contract type and electricity use.

Nevertheless, identification of the treatment effect still rests on a key assumption: the re-
sponse of electricity use to CDD differs only by unobservables uncorrelated with contract type. 
When compared to the levels regression in equation (5), the requirements for identification are less 
onerous. This is because equation (6) allows for selection into contract type based on fixed unob-
servables. Our empirical approach only breaks down if fixed building attributes that affect electricity 
use in a temperature-dependent way are also systematically correlated with contract type. In our set-
ting, this would occur if, for example, building age was systematically correlated with contract type, 
and the electricity response to temperature differed across building vintage. Under this scenario, 
our estimated treatment effect would capture the effect of a change in demand for air conditioning 
among firms in tenant-paid contract buildings relative to owner-paid buildings, where differences 
across buildings would reflect both contract type and other co-determined building attributes.

To examine the plausibility of our main identifying assumption, we augment equation (6) 
to account for the possibility that building attributes which differ systematically across contract type 
may also impact electricity use along a temperature gradient. Our main estimating equation thus 
conditions on interactions between weather and building and firm attributes that (i) differ across 
contract type and (ii) are primary determinants of electricity use (EIA, 2015),

1 2 1 2= [ , ]β β θ θ η γ γ ε+ + × + × + × + + + + +it zt zt i zt i zt zt zt t i t i itY C H T C T H C H L tψ iX  (7)

The term [ , ]× zt ztC Hψ iX , denotes a vector of building and firm attributes interacted with heating 
and cooling degree days, where Xi includes indicator variables for building type (retail, office, etc.), 
firm NAICS code, and quartile of building vintage.13

13.  The building vintage quartile dummies capture the variation in building energy standard adoptions in Connecticut 
(OSBI, 2018).



284 / The Energy Journal

All rights reserved. Copyright © 2020 by the IAEE.

Our testable hypothesis is that if building attributes confound the TRG then our coefficient 
estimate on contract type, 1θ , will be sensitive to the inclusion of interactions between temperature 
and building/firm covariates. If the coefficient estimate remains unchanged after conditioning on 
these interaction terms, then this provides evidence to support our main identifying assumption and 
the interpretation of our coefficient of interest as the impact of contract type on electricity use. In 
terms of the conceptual framework introduced in Section 2, a negative estimate for 1θ  in equation 7 
would therefore indicate that the intensive margin (price) dominates, whereas a positive coefficient 
would indicate that the extensive margin (energy efficiency capital) dominates.

4.3 Conditional Average Treatment Effects: Temperature Gradient

A central focus of this paper is whether the size of the split incentives problem varies sub-
stantially across firms. One form of heterogeneity in the response to contract type may arise based 
on customer size, since relatively larger firms are likely to have higher electricity expenditures, and 
therefore larger bill savings from conservation. To empirically examine this form of heterogeneity, 
we estimate conditional average treatment effects for firms in different deciles of average peak 
power, in (kW).14 To implement this, we augment equation (7) and estimate,

= ( ) ( ) ( ) ( )× + × + × × + × ×it zt id zt id i zt id i zt idY C H T C T H1d 2d 1d 2dβ β θ θI I I I

[ , ] η γ γ ε+ × × × + + + + +zt id zt id t i t i itC H L tdψ iX I I  (8)

This estimating equation now includes a vector of indicator variables denoted by 1id that are set 
equal to 1 if tenant i has mean peak power in decile d (i.e. = {1,...,10}d ), and zero otherwise. These 
indicator variables are interacted with the weather variables, and the treatment effect of interest. This 
allows to us to separately estimate, for each size decile, the differential effect of a CDD on demand 
for electricity across contract type.

4.4 Robustness

To examine the plausibility of our main identifying assumption, in addition to the attri-
bute-temperature interaction terms discussed in section 4.2, we implement two novel robustness 
tests. The first makes use of a regulatory change allowing buildings to switch contract type and tests 
if selection is an empirical concern. Second, to account for the possibility of remaining selection on 
unobservables, we apply a new technique proposed by Oster (2017) to bound our estimated treat-
ment effects.

Our first robustness test takes advantage of a policy change to sub-metering regulations. 
Within our sample period, a ban on sub-metering retrofits in Connecticut made selection by custom-
ers and building owners along contract type very costly, if not impossible. For example, customers 
desiring attributes of a centrally-metered building may have preferred to pay their own electricity, 
and landlords may have preferred to offer tenant-paid energy utilities. However, retrofitting build-
ings with unit-level electricity meters—a prerequisite for tenant-paid contracting—was not permit-
ted. In 2013, about two years after our sample period ended, this restriction was lifted and landlords 
were allowed to retrofit buildings with sub-meters.

14.  Details of the size decile construction are discussed in Section 3.1. However, it bears repeating that we define firm 
size by average peak power (in kW) in the top demand hour within a billing month, and that this variable is distinct from our 
dependent variable, total monthly energy consumption (in kWh).
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We use building-level tenancy contract information collected a year and a half after the 
Connecticut legislative change to assess whether sorting based on energy consumption preferences 
might have occurred once sub-metering retrofits were allowed. Since the legislative change allowed 
a more flexible re-matching of tenants into contract type, this presents an opportunity to observe 
which buildings switched and to directly examine whether controlling for them changes our baseline 
results.15 Under the null hypothesis of “no selection,” our estimated treatment effect should be un-
changed after conditioning on the identity of firms switching contract types by interacting indicator 
variables for these “switchers” with CDD and HDD.

Our second test uses a technique proposed by Oster (2017). This method requires the as-
sumption that the relationship between treatment and unobservables can be recovered from the 
relationship between treatment and observables. If this is the case, movements in the coefficient of 
interest and R-squared levels from the inclusion of control variables inform us about selection on 
unobservables. Building on Altonji et al. (2005), Oster (2017) points out that under the plausible as-
sumption that observable controls share covariance properties with unobservable variables, omitted 
variable bias is proportional to coefficient movements, but only if these movements are scaled by 
changes in total R-squared. An ideal scenario in this context is one in which the treatment coefficient 
of interest changes very little as new covariates are added, and the regression R-squared approaches 
its maximal theoretically possible value, after accounting for measurement error (Gonzalez and 
Miguel, 2015). In this case, a large R-squared suggests there is little variation remaining to bias the 
coefficient. The Oster approach yields a range for the bias-adjusted coefficient of interest, or an iden-
tified set formed by the treatment effect in the fully controlled regression, and the bias-adjusted ef-
fect. We retrieve the Oster bounded set in a post-estimation procedure and present it in our results.16

5. RESULTS AND DISCUSSION

The reduced form relationship between contract type, firm size, temperature and electricity 
consumption is presented in Figure 3. It plots electricity consumption against average temperature 
within one-degree bins, across both contract types, for the bottom nine deciles of firm size in panel 
(a), and the top decile in panel (b). Superimposed on each scatter plot is a lowess fit of consumption 
on temperature. This figure provides a preview to our formal regression results and points to three 
interesting patterns of firm behavior. First, as shown in panel (a), on average there is almost no 
discernible difference in consumption by contract type across the distribution of temperatures in the 
bottom nine size deciles. Second, in the top size decile, shown in panel (b), we observe a significant 
divergence in usage across contract types, with firms on owner-paid utility contracts exhibiting 
higher use. Third, this difference in usage is most pronounced when air-conditioning demand rises. 
Consumption levels begin to diverge more sharply once temperature increases beyond approxi-
mately 65 F, the temperature at which demand for cooling typically begins (EPA, 2014).

Table 3 presents our formal regression results. Column (1) displays estimates from the es-
timation of equation (6), a regression comparing the differential impact of a weather shock for firms 
with a tenant-paid contract type relative to an owner-paid contract, controlling for firm and bill-

15.  Roughly six percent of customers switched contract types by early 2015, with 34 owners moving to a tenant-paid 
contract and 31 transitioning to an owner-paid contract. We control for both types of switches in our empirical specifications. 
Switches to owner-paid contracting were not limited prior to the sub-metering policy change, and there are several reasons 
why owners may switch to owner-paid contracting, such as metering costs or tenant risk aversion (see Levinson and Niemann 
(2004) for a more detailed discussion).

16.  Appendix Section A.3 provides more detail on the Oster bounds approach.
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ing-month fixed effects and firm-specific time trends. When looking across all firms, we find there is 
no difference in the effect of weather shocks on consumption across contract type. In the remainder 
of Table 3, we report results that include tenant-paid contract interactions with CDD and HDD for 
each size decile. Column (2) reports results from the estimation of the conditional average treatment 
effects analog of equation (6). Columns (3) to (5) examine the robustness of this result to potential 

Figure 3: Consumption by contract type

Notes: Each scatter plot presents monthly electricity consumption against average temperature within 1-degree bins, for the 
bottom nine decile of firms in panel (a), and the top consumption decile in panel (b). The observations are color-coded by 
contract type, in both the bottom nine deciles (panel (a)), and the top consumption decile (panel (b)). The solid and dashed 
lines are a lowess fit of the same data.
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confounding factors by reporting results from the estimation of equation (8). Column (3) conditions 
on the interaction of CDD and HDD with building and industry type; column (4) adds interactions 
of CDD and HDD with building vintage quartiles; and column (5) adds controls for the differential 
effect of temperature shocks among the contract switchers described in Section 4.4.

Our results indicate that a split incentives problem leads to overconsumption of energy 
among the largest decile of firms. Focusing on our preferred specification in column (5), we find that 
a tenant-paid contract leads to about a 1.4 percent decrease in kWh per average daily CDD for the 
top decile of electricity consumers. This translates into about a 3 percent decrease in electricity use 
among the top size decile of customers. In contrast, contract type does not statistically impact con-

Table 3: Split incentive effect by consumption decile

Notes: The dependent variable in columns (1)-(5) is the natural log of electricity use in a billing month, and in column (6) 
it is the natural log of the electricity bill in a billing month. Column (1) presents results without decile interactions, and 
columns (2)-(6) include results across size deciles. Additional controls included in all regressions are cooling degree days, 
heating degree days, and heating degree days interacted with contract type. Column (3) further conditions on cooling and 
heating degree days interacted with building type and NAICS code dummies. Column (4) adds interactions of quartile of 
year-built with cooling and heating degree days. Column (5) also includes switchers dummies interacted with cooling and 
heating degree days. Standard errors clustered at the building level are in parentheses, ***p<0.01, ** p<0.05, * p<0.1.
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sumption decisions for the other 90 percent of commercial firms. This large divergence in response 
to contract type based on firm size points to a first source of heterogeneity in response to treatment, 
and potentially large savings from the targeted deployment of a policy instrument.

A second source of heterogeneity results from seasonal variation in the treatment effect. We 
find that the split incentive can lead to significant increases in electricity use but only during the hot 
summer months. In the summer months, switching from an owner to a tenant-paid contract would 
reduce monthly electricity consumption by up to 14 percent. The summer response is consistent 
with a framework in which demand for electric air conditioning during these hot months drives the 
divergence in the TRG across owner- and tenant-paid contracts.17

Though contract type only influences electricity choices for a narrow set of customers 
during a concentrated period of time, restructuring contract type has meaningful implications for 
aggregate electricity usage. This is because the responsive firms are the largest electricity consum-
ers and are quite sensitive to hot temperatures. Our results suggest that a policy which switched the 
largest decile of electricity consuming firms in our sample from an owner to tenant-paid contract 
would result in annual electricity savings per firm of roughly 19,000 kWh. Comparing these savings 
to the total quantity of electricity consumed by all commercial firms in our sample, we find that this 
policy change would lead to a 1.4 percent reduction in total electricity use.

We also estimate the effect of contract type on electricity expenditure by estimating our 
preferred conditional average treatment effects specification with log monthly bill as the dependent 
variable; results are shown in column (6) of Table 3. For the top decile of electricity consumers, the 
estimated treatment effect is a 1.2 percent decrease in the monthly bill per average daily CDD. The 
value of total bill savings among these high consumers is approximately $310 per summer month. 
On average, this represents a 10 percent reduction in electricity expenditure.

5.1 Robustness Results

One of the robustness tests discussed in Section 4.4 is to use tenancy contract information 
collected a year and a half after a Connecticut legislative change to assess whether sorting based 
on energy consumption preferences might have occurred once sub-metering retrofits were allowed. 
Under the null hypothesis of “no selection,” our estimated treatment effect should be unchanged 
after conditioning on the identity of firms switching contract types by interacting indicator variables 
for these “switchers” with CDD and HDD.

This is indeed what we observe. As shown in column (5) of Table 3, including the switch-
ers controls has no significant effect on our estimated coefficient relative to column (4), which does 
not include the switchers controls. In addition, since columns (3) to (5) of Table 3 include building 
and firm attributes interacted with heating and cooling degree days, as discussed in Section 4.2, the 
insensitivity of the results to these provides evidence to support our main identifying assumption 
and the interpretation of our coefficient of interest as the impact of contract type on electricity use.

To further gauge the robustness of our results to potential selection on unobservables, we 
apply a second robustness test: the bounds analysis proposed by Oster (2017). We make an equal 
selection assumption, which implies that any residual omitted variable bias is a function of: (i) the 
treatment coefficient before and after the inclusion of covariates; (ii) R-squared values before and 
after the inclusion of covariates; and (iii) the maximum theoretically possible R-squared, namely 

17.  The coefficients on HDD (not reported) are not statistically significant. Since most firms in Connecticut use natural 
gas or fuel oil for heating, this is not surprising.
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from a regression on consumption and all possible observable and unobservable controls.18 Given 
our rich set of controls, the equal selection assumption is likely conservative, as it assumes that any 
remaining unobservables are as important as the observables in explaining the treatment (Oster, 
2017; Altonji et al., 2005).

Table 4 reports the identified set estimates from two different specifications with log usage 
and log bill as the dependent variables, respectively, corresponding to the fully controlled specifi-
cations reported in columns (5) and (6) of Table 3.19 As shown in this table, we continue to detect a 
split incentives effect after accounting for any remaining selection on unobservables. A tenant-paid 
contract induces at minimum monthly electricity and bill savings of 0.7 and 0.6 percent per CDD, 
respectively. This range implies annual firm-level bill savings of between $677 to $1,265.

Table 4: Oster bounds for monthly usage and bill

Notes: The Oster bounds present an identified set of treatment effect coef-
ficients (interpreted as savings per average daily CDD) by accounting for 
residual omitted variable bias through an equal selection assumption. The 
omitted variable bias is assumed to be a function of the treatment coefficient 
and R-squared values before after the inclusion of covariates, as well as the 
maximum theoretically possible R-squared, namely from a regression on 
consumption and all possible observable and unobservable controls.

We present further robustness checks in Appendix section A.3. As shown in Table A2, we 
also include building story interactions with cooling and heating degree days; the results are quali-
tatively unchanged and the point estimate on our variable of interest increases. Table A2 also shows 
that our treatment effect is not sensitive to the functional form of the building characteristic controls. 
Section A.2 also addresses concerns that electricity use may be correlated with mean peak load (the 
size decile), which could bias our coefficient of interest. To test this concern, we estimate decile-by-
decile regressions, thereby eliminating any potential correlation between the decile dummy variable 
and electricity use. As shown in Table A3, the top decile results are virtually unchanged in the 
decile-by-decile results.

It is possible that there are some residual unobserved attributes of the 19 firms that are 
correlated with the (true) treatment effect. Such unobservables would have to be time-varying due 
to the presence of tenant fixed effects, and must also be orthogonal to building type, NAICS code, 
building vintage, and number of stories in order to introduce bias.

18.  Further details on the Oster approach are provided in Appendix Section A.2.
19.  The maximum theoretically possible R-squared may be less than 1 if there is measurement error. These set estimates 

assume that the maximum possible R2 is 0.98, given the estimated 2 percent measurement error in electricity meter readings 
(Dong et al., 2005; Reddy et al., 1997).
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Finally, since our need to lean on a small sample of top decile firms raises the possibility 
that our results are driven by outliers, we assess whether the exclusion of any single observation 
negates our main result. Figure 4 presents coefficient estimates and confidence intervals on the 
Tenant × CDD interaction term in the 10th decile, obtained by successively dropping one of the 19 
owner-paid firms and estimating equation (8). As shown, our results are robust to the exclusion of 
any of the largest 19 firms on owner-paid contracts.20

Figure 4: Robustness to outliers

Notes: To assess whether outlier observations from one of the 19 owner-paid firms in the top size decile are driving the 
results, this figure presents coefficient estimates obtained by successively dropping one of the 19 firms. The blue dots repre-
sent the point estimates, and the capped lines are the 95% confidence intervals.

5.2 Generalizability

There are roughly 18 million commercial electricity customers in the U.S. and 5.6 million 
commercial buildings (EIA, 2017; EIA, 2012). In this section, we explore the similarity of the sub-
population under study here to the full population of commercial sector tenanted buildings in the 
U.S. Understanding if our estimates apply to the broader population of large commercial users pro-
vides insights into the potential energy savings from restructuring electricity contracts from owner- 
to tenant-paid. To demonstrate the broader relevance of our results, we proceed in three steps. First, 
we make use of a representative data set of national commercial building attributes to show that, 
along important observables, the data source used in our analysis is representative of building at-
tributes throughout the U.S. Second, we focus exclusively on the database used in our analysis, 
and illustrate that the distribution of attributes for commercial buildings in Connecticut is similar 
to those in the broader U.S. Third, we compare contract types and energy intensity in commercial 

20.  The results are also robust to excluding any of the largest 91 tenant-paid firms. These results are not reported here but 
are available from the authors by request.
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buildings in Connecticut to those across the U.S. We use these contract type statistics in Section 5.3 
to estimate the energy savings implied by our treatment effect.

In the first step, we demonstrate that the building database used in our analysis is a repre-
sentative sample of building attributes in the U.S. Our empirical sample uses data on contract type 
and building attributes collected from the CoStar group. An advantage of the data collected by the 
CoStar group is that it includes buildings throughout the U.S., totaling about 97 percent of tenanted 
buildings. We compare three important building characteristics in the CoStar dataset—building 
height, age and size—to the Energy Information Administration’s Commercial Building Energy 
Consumption Survey (CBECS), a nationally representative data set on attributes in both owner and 
tenant occupied commercial buildings. The CBECS and CoStar datasets are very similar in building 
height and vintage. While the average CoStar building is larger than the CBECS average, this may 
be representative of the larger size of leased buildings compared to owner-occupied buildings (EIA, 
2012). These similarities in observables, along with the fact that the CoStar database is reflective of 
leased commercial buildings in the U.S., lend confidence to the national representativeness of the 
CoStar data.

Second, we show that within the CoStar data there is strong overlapping support in the 
distributions of measurable building characteristics between Connecticut and the rest of the United 
States. The overlapping support of building characteristics can be seen in Figure 5. Ideally, we 
would compare attributes of buildings in the top 10th percentile of electricity usage in Connecticut 
to those in the U.S. This is not feasible since CoStar does not collect electricity use as a variable. 
Instead we display the full distribution for both Connecticut and the U.S. of building attributes that 
we hypothesize are highly correlated with electricity use: square feet, number of stories, and year 
of construction. For all three variables, significant overlap exists, despite some apparent differences 
(e.g. Connecticut has a lower proportion of very small buildings). As we discuss below, differences 
between the Connecticut sample and the broader population imply that the commercial split incen-
tives problem is potentially even larger in the rest of the U.S. than in Connecticut.

Finally, comparing the composition of contract types and energy intensity in Connecticut 
to the rest of the U.S. leads to the conclusion that the split incentive problem we identify is likely 
at least as large outside of Connecticut as it is within Connecticut. Approximately 34 percent of 
commercial, non-government floorspace in New England is leased, as compared to 39 percent na-
tionwide (EIA, 2012). The CoStar database reports contract type for commercial lessees nationwide, 
differentiating between contracts that transmit price incentives to tenants and those that do not. In 
our Connecticut sample, about 15 percent of commercial lessees are on owner-paid contracts, as 
compared to 25 percent nationwide.21 With respect to energy intensity, New England is the least 
energy-intense region in the nation when measured by kWh per square foot of commercial build-
ing space (EIA, 2012). When we condition on buildings in which owners pay for electricity, New 
England is still well below the national average: 11.6 kWh per square foot in New England versus 
14.4 nationwide.

Proportionally, less commercial floorspace is rented in New England than nationwide; a 
higher proportion of commercial renters are on owner-paid contracts in the rest of the U.S.; and the 

21.  The nationwide figure is even larger if we include contracts with a prorated utility payment for all building occupants, 
whereby tenants pay a weighted average of the building’s utility bill based on the square feet occupied. In this contractual 
arrangement, tenants do not pay for the marginal cost of their energy use and large consumers benefit by paying less than their 
share of utilities. Conservatively, we categorize these as ‘owner-paid’ in our paper, though only about 3 percent of tenants are 
on a prorated contract in our sample. Nationwide, about 20 percent of tenant contracts include a prorated utility payment. In 
Section 5.3 we treat these figures under the most conservative assumptions.
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energy intensity per commercial square foot is higher in regions outside of New England. Thus the 
magnitude of the potential split incentives problem in the commercial segment is likely to be larger 
per square foot of building space in the rest of the country than it is in Connecticut.22

5.3 Quantifying Benefits from Aligning Split Incentives

Under certain plausible assumptions, addressing the commercial split incentives problem 
for the largest ten percent of commercial firms nationwide has relatively high benefit-to-cost, and 
would produce energy savings roughly three times larger than those achieved from restructuring 
rental contracts for all residential users who don’t pay their utilities. As detailed in Appendix A.4, 
using data on the costs of sub-metering, we estimate the payback period and cost effectiveness from 
sub-metering individual units and shifting to a tenant-paid contract. We find the payback period is 
less than one year and the cost effectiveness is 3.3 cents per kWh after the first year, 1.6 cents per 

22.  While we have done our best to assess the representativeness of our sample using measured building characteristics, 
there remains the possibility that we are missing some remaining time-varying, unmeasured unique aspect of the 19 own-
er-paid firms, which we use to identify our effect.

Figure 5: Support of building characteristics in Connecticut vs. U.S.

Notes: The Figure shows the overlapping support of building size, stories and year of construction for Connecticut and U.S. 
buildings.
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kWh after two years, and 1.1 cents after 3 years, assuming the annual electricity savings persist 
at the same level. As laid out in Appendix A.5, the energy savings from converting the top size 
decile of firms nationwide from owner- to tenant-paid contracts is 411 gigawatt-hours per year, and 
amounts to 289 percent of the residential sector analog.23

We also calculate the reduction in external damages from tenant-paid contracts in our sam-
ple. In Appendix section A.6, we convert the estimated energy savings into avoided CO2 and PM2.5 
emissions, and then monetize the reduction in emissions. Estimated external benefits and the value 
of energy savings per firm are presented in Table 5. As shown in columns (1) and (2), the per firm 
value of avoided damages ranges from $102 to $204. In columns (3) and (4) we add to this the 
estimated bill savings and report an annual firm-level social benefit of switching from an owner- to 
tenant-paid contract ranging between $779 and $1,469. Finally, in columns (5) and (6) we measure 
the value of the energy savings using the avoided marginal cost of electricity in place of bill sav-
ings.24 Total social benefits using avoided marginal costs are between $676 and $1,346. Given that 
the average cost of a sub-meter is $625, sub-metering retrofits are likely net beneficial from a social 
perspective.

Table 5: External benefits and the value of energy savings per firm

Notes: External Benefits measure the annual per-firm reduction in pollution damages from lower electricity consumption. 
External + Value of Savings (Billed) measures the sum of the external benefits and the value of the bill savings from con-
tract type, which are the annual bill savings noted in the text ($677-$1487). External + Value of Savings (Marginal Cost) 
uses the average hourly locational marginal price in Connecticut over the sample period, of $59.42, to value the energy 
savings. The low and high values are derived from the Oster identified set estimates for electricity savings, discussed in the 
text.

One caveat in the interpretation of these benefit calculations is that we focus exclusively on 
the net effect of a switch from owner to tenant-paid contracts on the TRG. The possibility remains 
that such a switch can lead to a countervailing underinvestment in energy efficiency capital that may 
impact the level of electricity use. While many building-level energy efficiency investment choices 
available to landlords, such as insulation or air-conditioner models, affect the TRG, we cannot rule 
out that the level effects may mitigate the magnitude of the energy savings implied by our estimates, 
implying a potential role for complementary building energy standards.

5.4 Bill Savings and the Non-Response of Most Commercial Firms

While we estimate that contract type has a sizable effect on electricity use for the largest 
firms, one unanswered question is why the remaining 90 percent of commercial firms do not re-

23.  Under extremely conservative assumptions detailed in Appendix [residential]A.5, the savings are still 125 percent of 
the residential sector analog.

24.  We use this approach to net out fixed costs. Fixed costs are not avoided costs in this setting, since they will be re-
covered by the utility from other customers under the cost-plus regulatory structure in Connecticut. Our measure of avoided 
marginal cost is the average hourly locational marginal price for Connecticut over the sample period, $59.42. Our data source 
is the New England Independent System Operator (NE-ISO), www.iso-ne.com.

http://www.iso-ne.com
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spond to contract type. In our view, the most likely explanation is that the net benefit of decreasing 
electricity consumption for these customers is negative. This is consistent with recent research that 
documents negative realized net benefits from energy efficiency investments (Hassett and Metcalf, 
1999; Fowlie et al., 2015). Consider the electricity choices of an office building, the sector that 
makes up the largest share of buildings in our sample. Overcooling and overheating are common 
in office buildings. Derrible and Reeder (2015) suggest that overcooling increases electricity con-
sumption by 8 percent per year. For the average top decile firm in our sample, this would translate 
into roughly 40,000 of wasted kWh that could be eliminated by managerial oversight or behavioral 
change. Such actions would translate into $3,200 in bill savings. By comparison, 8 percent of usage 
for the average firm in the next-largest (ninth) decile translates into 15,000 kWh, or $1,200 in poten-
tial savings. Accessing these savings would likely require incurring a fixed cost, such as allocating 
attention of a manager or engineer to monitor and adjust air conditioner and chiller operation. For all 
but the largest firms, the cost of avoiding overcooling may well exceed the reduction in expenditure 
from wasted energy.

Other explanations could also account for the lack of a treatment effect across most firms. 
One possibility is that a tenant-paid contract does induce some conservation behavior among the 
bottom 9 deciles, but that landlord-side underinvestment in building-level energy efficiency cancels 
any of the consumption savings from tenants paying their own utility bills. Another possibility is 
(potentially rational) inattention leading to unresponsiveness among commercial firms (Jessoe and 
Rapson, 2015). Comparing the $677 to $1,265 annual bill saving from a tenant-paid contract to the 
average commercial unit size in Connecticut, 14,000 square feet, implies an average annual bill 
saving of 4.8 to 9 cents per square foot. This represents about 0.2 percent of the average annual 
revenues per square foot in office and retail industries and highlights that the savings smaller firms 
forgo likely represent a small share of their annual sales. After accounting for the time and effort 
required to calculate the energy savings from different energy efficiency investments, smaller firms 
may be rationally inattentive to potential energy savings (Sallee, 2014).

6. CONCLUSION

We measure the “split incentive” effects of tenancy contract type using a unique empirical 
setting and dataset of tenancy contracts and electricity use among commercial sector clients. Our 
empirical framework compares how temperature shocks impact electricity consumption across firms 
on owner- and tenant-paid contracts. Importantly, it helps us to overcome the well-known empirical 
challenge of separately identifying the split incentives problem from selection on fixed attributes.

Our approach consists of three steps to probe and address the main identification challenge: 
selection on unobservables that affect electricity use along a temperature gradient. We allow for a 
heterogeneous TRG along several dimensions by including interactions between temperature and 
building attributes that may be correlated with energy consumption, testing for selection by taking 
advantage of a state-level change in metering regulations, and accounting for any potential remain-
ing correlations between unobservable characteristics and the treatment using the Oster (2017) iden-
tified set approach.

Our results indicate heterogeneous returns to a tenant-paid contract, with a negative and 
significant effect of the tenant-paid contract type on consumption observable only in the top decile 
of firm size. The intensive margin margin effect dominates among the largest firms. This heteroge-
neous response is consistent with a setting in which the bill savings from changing consumption do 
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not cover the adjustment costs for small firms, and is in line with recent evidence from the residen-
tial sector (Elinder et al., 2017).

This implies a potential policy case for encouraging tenant-paid energy contracting among 
large commercial and industrial customers. For the largest decile of firms, we find that firms who 
pay their own utility bills consume about 3 percent less electricity annually than tenants whose util-
ity bills are bundled into rents, and save between $677 and $1,265 on their annual electricity bills. 
These reductions lead to a 1.4 percent saving in total electricity consumed by all firms in our sample. 
The payback period from sub-metering and switching to a tenant-paid contract is less than one year 
when considering only the temperature response gradient.

However, a policy mandating such a switch may also impact the level of electricity use via 
owner investment decisions. Mandating tenant-paid contracts could lead owners to invest less in 
energy efficient capital, which would affect energy consumption levels. Consider a world in which 
landlords invest more in energy efficiency when they bear the costs of their tenant’s electricity use. 
Since owner-paid buildings under this line of reasoning already enjoy a high level of energy efficient 
capital, if they were to become tenant-paid, not much would change since energy efficiency is both 
durable and in most cases not transportable from one building to another. There’s little reason to 
expect landlords to spend money to un-install past energy-efficiency investments. As a result, only 
going-forward investments would be affected by this contract switch. There is little evidence to 
draw upon that would allow us to compare the magnitude of these investment effects to the gradient 
effects measured in this paper. However, while these may well generate sizeable effects over the 
long term, they could also be small and may be outweighed by the gradient effects.

Despite the robustness of our results, there is still a need for complementary evidence via 
additional research. Statistical power is a concern throughout empirical science (Ioannidis, 2005), 
and studies with samples of this size may be at risk of being underpowered. Nonetheless, the dif-
ficulty of developing and deploying a research design to test the split incentives problem among 
commercial electricity customers makes ours one of the very first contributions to quantify the 
commercial split incentives effect on energy consumption.
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APPENDIX

A.1 Bill Cycles and Weather

We assess whether bill cycle is correlated with the TRG across contract type by testing for 
a systematic relationship between bill cycle and weather. In Table A1, we report the results of a re-
gression of weather on bill cycle. As shown, we find that the sixteen billing cycles are neither jointly 
nor individually significant in explaining cooling degree days or heating degree days.

A.2 Oster Bounds Details

Our study assesses the effect of contract type T on electricity consumption y, as specified 
in equation (8). One of our robustness tests implements the Oster (2017) approach. A more detailed 
explanation of the approach follows here.
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If observables and unobservables have the same explanatory power in y (after taking into 
consideration any measurement error in y), then the following is a consistent estimator of the effect 
of T on y:

Table A1: Bill cycle conditional independence assumption
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where *θ̂  and *R  are the coefficient estimate and 2R  from the regression with a full set of controls, in 
column (5) of Table 3, and θ̂  and R are the coefficient and 2R  from an uncontrolled regression that 
includes only the coefficient of interest. The maxR  term represents the 2R  in a regression of y on all 
possible observable and unobservable controls, which can be less than 1 in there is measurement 
error in y. The ˆ̂θ  is the basis for identifying the upper bound for the Oster bounds presented in Table 
4 of the main paper.25

A.3 Additional Robustness Tests

Our estimated treatment effect is not sensitive to alternative specifications, as shown in 
Table A2. Column (1) is the fully controlled specification from column (5) of Table 3, augmented 
with stories quartile dummies interacted with cooling and heating degree days. The point estimate 
increases and remains statistically significant. In columns (2)–(7) we show that the results are not 
sensitive to the functional form of the building characteristic controls. The point estimate changes 
very little when the characteristics are included as is or in the form of tertile, quintile or sextile 
dummies.

Another robustness check we conduct is to estimate decile-by-decile regressions instead of 
interacting decile dummy variables with the contract type dummy in the full sample, as in equation 
(8). This is to assess whether consumption in (kWh) may be correlated with average power in the 
peak hour within a billing month, which we use to construct our size deciles. If that is the case, one 
might be concerned this correlation could bias the coefficients.26 Estimating ten separate regressions 
for each decile avoids any potential correlation of the decile dummy variables with consumption.

The results of these regressions are presented in Table A3. They confirm what we find in 
the full sample results in Table 3 of the paper. In the fully controlled specification, shown in col-
umn (4), the treatment effect indicates a 1.3 percent reduction in monthly consumption per average 
monthly cooling degree day induced by a tenant-paid contract. This is lower by 0.1 percentage 
points compared to Table 3 in the paper. These decile-by-decile regressions also show that in the 
sixth size decile a tenant-paid contract is associated with an increase in consumption and monthly 
bill relative to an owner-paid contract. Based on our conceptual model, this suggests that capital 
inefficiencies may dominate any benefit from a price signal in this decile. However, the share of the 
within variation in consumption explained by the different specifications in the sixth decile is among 
the lowest, which suggests that there is considerable remaining unobserved heterogeneity.

Finally, to allay any concerns regarding a potential relationship between firm deciles and 
the kWh-temperature gradient, we have created Figure A1 reporting the consumption response to 
temperature within each decile. The figure reports the coefficients of a decile-by-decile regression of 
normalized kWh on average daily temperature. The coefficients report values for deciles 1 through 
10. As shown, there is no evidence of a monotonic relationship between consumption and tempera-

25.  As noted in the main paper, given our rich set of controls the equal selection assumption we make is likely conserva-
tive, as it assumes that any remaining unobservables are as important as the observables in explaining the treatment (Oster, 
2017; Altonji et al., 2005).

26.  The correlation between the size deciles and monthly kWh consumed is 0.58, so while it is positive, it is by no means 
perfect. There are many firms with high average kW and low kWh and (to a lesser extent) vice versa.
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ture moving from the lower to upper deciles. For example, the third, fourth and ninth deciles have a 
higher consumption response to temperature coefficient compared to the top decile.

A.4 Benefit-to-Cost Calculation

Sub-meter costs range from $250-$1000 per unit (Pike Research, 2012; White, 2012; Mill-
stein, 2008). Given the average estimated annual bill savings of $970 and assuming a unit-level 
sub-meter cost of $625, the payback period is less than one year, even after allowing for installation 

Table A2: Robustness to alternative specifications

Notes: The dependent variable in columns (1)-(7) is the natural log of electricity use in a billing month. Column (1) 
augments the specification estimated in column (5) of Table 2 to include building stories quartile dummies interacted with 
cooling and heating degree days. Columns (2)-(7) present specifications without firm fixed effects. Column (2) includes 
building type and NAICS code dummy variables, year of construction, number of stories and building size in square feet. 
Column (3) replaces the number of stories with dummy variables for each story. Column (4) includes quartile dummies 
for year of construction, number of stories, and building size. Columns (5)-(7) includes the same variables in the form of 
tercile, quintile and sextile dummies, respectively. Additional controls included in all regressions are cooling degree days, 
heating degree days, and heating degree days interacted with contract type. Standard errors clustered at the building level 
are in parentheses, ***p<0.01, ** p<0.05, * p<0.1.
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costs. This is well below the payback threshold for most firms’ energy conservation investments 
(Anderson and Newell, 2004). With a unit- or firm-level sub-meter cost of $625, a cost which would 
be incurred up-front, and an average annual treatment effect of 19,000 kWh saved among high 
consuming firms, the cost effectiveness is 3.3 cents per kWh after the first year, 1.6 cents per kWh 
after two years, and 1.1 cents after 3 years, assuming the annual electricity savings persist at the 
same level.27 The submeter costs cited above do not capture other potential costs from switching to 
tenant-paid contracting, such as tenants who prefer a bundled rent and utilities payment who would 

27.  In most states sub-meter system costs can be recovered through surcharges on tenant utility bills. This enables owners 
to recover their investments costs. If the owner’s surcharge doesn’t recover the full value of the savings, the payback period 
may be longer.

Table A3: Decile-by-decile regressions

Notes: The dependent variable in columns (1)-(4) is the natural logarithm of electricity use in a billing month. The depen-
dent variable in column (5) is the natural logarithm of billed expenditure in a billing month. Standard errors clustered at the 
building level are in parentheses, ***p<0.01, ** p<0.05, * p<0.1.
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therefore pay a premium for such an arrangement. While it is difficult to test for this possibility or 
identify a value for these other potential costs, a full accounting of all costs should be compared to 
the benefits we have estimated here.

A.5 Energy Savings from Restructuring Contracts

To calculate the energy savings from restructuring rental contracts for the largest ten per-
cent of commercial firms nationwide, we perform the following calculation. There are 130 million 
residential electricity customers in the U.S., of whom 10.4 million rent dwellings with utilities 
included (EIA, 2009). Assuming they conserve 0.7 percent of their electricity when exposed to a 
non-zero price (Levinson and Niemann, 2004), total residential savings are 142 million kWh per 
year. By comparison, there are approximately 18 million commercial sector electric customers in 
the U.S. (EIA, 2017), 39 percent of which rent their building space (based on the share of tenanted 
buildings in the U.S. in EIA, 2012). Suppose 25 percent of those (1.74 million) have an owner-paid 
utilities contract. The top size decile, 174,000 customers, save a total of 411 gigawatt-hours per year 
(1.4 percent based on our preferred empirical estimates) from a switch to tenant-paid contracts. This 
amounts to 289 percent of the residential sector analog. Under much more conservative assump-
tions, this number falls to 177 gigawatt-hours per year, or 125 percent of the residential sector ana-
log. We reduce the fraction of renters from 39 percent to 36 percent to reflect the share of tenanted 
floor space, rather than the share of tenanted buildings (EIA, 2012), use the average electricity use 
across all large firms (not just those on owner-paid contracts, who use more electricity), and adjust 
our treatment effect estimate down by one standard deviation. These changes are multiplicative and 
thus result in an extremely conservative estimate. Importantly, this calculation does account for 

Figure A1: Relationship between consumption and temperature

Notes: The figure reports the coefficients of decile-by-decile regressions of normalized kWh on average daily temperature. 
Moving left to right, from the lower to upper deciles, there is no evidence of a monotonic relationship between consump-
tion and temperature.
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underinvestment in energy efficiency, and the subsequent increase in energy consumption, that may 
arise from a switch from owner to tenant-paid contracts.

A.6 Monetizing External Damages

To calculate the reduction in external damages from tenant-paid contracts, we convert the 
estimated energy savings into avoided CO2 and PM2.5 emissions, and then monetize the reduction 
in emissions. We do not include damages from NOx and SO2 emissions, given regional and federal 
regulations in place during our sample period. Assuming the emissions caps for these regulations 
were binding, a reduction in electricity consumption would not reduce aggregate emissions. While 
CO2 emissions were also regulated, the early phase of this program, covering our sample period, did 
not have a binding cap (CRS, 2017).

To quantify CO2 reductions we use the Environmental Protection Agency’s eGRID data-
base which provides average 2009 emission rates for the New England subregion, measured as tons 
emitted per MWh of electricity produced. Since we use average CO2 emission rates in our calcu-
lations, rather than marginal rates, our estimated reductions are conservative (see Rothschild and 
Diem, 2009). The eGRID emission factors together with the energy savings among the top decile 
firms and the total number of tenant-paid firms translates into aggregate CO2 savings of between 
615 to 1200 thousand tons per year.28 To give a sense of scale, this is between 3.3 to 6.6 times the 
average annual savings achieved from yearly Weatherization Assistance Program (WAP) retrofits.29 
The PM2.5 emission rates estimate is obtained from Connors et al. (2005). The PM2.5 emission rate 
estimate is obtained from Connors et al. (2005). Marginal CO2 damages are from IWGSCC (2015) 
and damage estimates for PM2.5 come from Muller and Mendelsohn (2007).

28.  Total CO2 emissions saved per tenant-paid firm during summer months, using the Oster bounds, is 3.5-7 tons.
29.  An average of 175,000 WAP retrofits are performed every year, which save approximately 1.06 tons of CO2 per 

household per year (Fowlie et al., 2018; DOE, 2017; EIA, 2010). These retrofits therefore save 186,000 tons of CO2 every 
year.




