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Oil Prices and the Renewable Energy Sector

Evangelos Kyritsis* and Apostolos Serletis**

abstract

Energy security, climate change, and growing energy demand issues are moving 
up on the global political agenda, and contribute to the rapid growth of the re-
newable energy sector. In this paper we investigate the effects of oil price shocks, 
and also of uncertainty about oil prices, on the stock returns of clean energy and 
technology companies. In doing so, we use monthly data that span the period from 
May 1983 to December 2016, and a bivariate structural VAR model that is modi-
fied to accommodate GARCH-in-mean errors. Moreover, we examine the asym-
metry of stock responses to oil price shocks of different sizes, with and without 
oil price uncertainty. Our evidence indicates that oil price uncertainty has no sta-
tistically significant effect on stock returns, and that the relationship between oil 
prices and stock returns is symmetric. Our results are robust to alternative model 
specifications and stock prices of clean energy companies.
Keywords: Renewable energy, Transition, Oil prices, Uncertainty, GARCH-in-
Mean model, Asymmetric responses
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1. INTRODUCTION

The renewable energy sector has been experiencing remarkable growth over the past de-
cade. Worldwide installations of renewable power capacity reached a new high record of 138.5 GW1 
in 2016 (New Energy Finance, 2017), and expectations for large-scale deployment of renewables 
have also been raised for years to come. Figure 1 depicts the contribution of each fuel source in 
electricity generation in OECD countries and highlights the rapid integration of renewables during 
the recent years.2 This development, however, is not a result of a single factor or event, but rather 
a combination of economic and societal concerns associated with the reliability and security of en-
ergy supply, the depletion of natural resources, extreme weather events triggered by environmental 
degradation, and decoupling of economic growth from energy consumption. Moreover, the financial 
performance of renewable energy companies has a critical influence on the future development of 
the renewable energy sector, since companies’ profitability is positively related to their success in 
acquiring private capital for infrastructure investments. Therefore, a better understanding of the 
underlying driving forces is of high interest, not only to investors who need to assess the risk expo-

1. This includes global new investments in wind, solar, biomass and waste-to-energy, geothermal, small hydro and 
marine sources.

2. Data are obtained from the International Energy Agency (2017) and the World Bank (2018).
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sure assumed by their firms, and construct hedge ratios and portfolio weights accordingly, but also 
to policymakers who must evaluate and adjust the renewable energy policy landscape, in order to 
facilitate the transition towards a sustainable energy system.

This paper contributes to the literature on the relationship between the price of oil and the 
stock returns of clean energy and technology companies in several ways. First, we use monthly data 
over the period from May 1983 to December 2016, and estimate a bivariate GARCH-in-Mean struc-
tural VAR model by full information maximum likelihood, thus avoiding Pagan’s (1984) generated 
regressor problems. By doing so, we directly investigate the effect of oil price uncertainty on the 
response of the renewable energy and technology stock returns. Second, we generate the impulse 
response functions to assess whether the response of stock returns is symmetric or asymmetric to 
positive and negative oil price shocks, after accounting for the effect of oil price uncertainty. As an 
additional contribution to the literature, the use of a test, recently introduced by Kilian and Vig-
fusson (2011), over the same data set allows us to investigate whether the renewable energy and 
technology stock returns respond symmetrically or asymmetrically to positive and negative oil price 
shocks of different magnitude.

Financial performance of renewable energy companies is contingent upon numerous fac-
tors, and in fact prices of other energy products that are likely to substitute for renewable energy, 
for instance, through their positive cross-price elasticities, are considered to be among the most 
important determinants. Hence, with crude oil being the dominant energy source in the world, ac-
counting for 36.9% of the global primary energy consumption in 2016 (Energy Information Admin-
istration, 2017),3 it is essential to investigate the relationship between the oil price development and 
the financial performance of the renewable energy sector. Although the contribution of crude oil is 
decreasing over time in electricity generation, where the majority of renewable energy technologies 
are predominantly used, other fossil fuels such as coal and natural gas still dominate the electricity 
supply mix (see Figure 1). In fact, natural gas emerges as a considerable source of the electricity 
production mix, since it supports the flexible peak-load power generation that complements the 
intermittent nature of renewables (Kyritsis et al., 2017). Empirical studies, however, investigate 
the interactions between fuel prices and provide significant evidence of spillovers. In particular, 
Efimova and Serletis (2014), in a notable study, find unidirectional price spillovers from crude oil 
to natural gas and electricity markets, thus underlining the importance of crude oil in the U.S. econ-

3. Oil supply of 35.942 quadrillion Btu satisfied 97.394 quadrillion Btu of demand (Energy Information Administration, 
2017).

Figure 1: Gross electricity production by source in OECD countries (% share)
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omy. Hence, although crude oil and renewables seem to operate in different markets, they do interact 
with each other both directly and indirectly through other channels of influence.

Apart from the vast majority of the literature that investigates the effects of oil prices on the 
economy, the aggregate stock market activity, or even other energy prices such as, for example, the 
natural gas price, only a few studies pay particular attention to the impact of oil prices on the finan-
cial performance of the renewable energy sector; the most noticeable being Henriques and Sadorsky 
(2008), Kumar et al. (2012), Broadstock et al. (2012), Sadorsky (2012a), Managi and Okimoto 
(2013), Wen et al. (2014), Inchauspe et al. (2015), and more recently Reboredo et al. (2017). All of 
these studies, however, ignore the potentially important effect of oil price uncertainty on renewable 
energy companies, and more particularly on their financial performance.

Since the outset of the global financial crisis in 2008–2009, the crude oil market has ex-
perienced dramatic oil price fluctuations, for instance from $140/barrel in the summer of 2008 to 
$60/barrel by the end of 2008, which were followed, after the sharp downturn in the mid-2014, by 
low and remarkably volatile oil prices (see Figure 2a). Increased oil price volatility translates into 
significant uncertainty in the crude oil market, and its overall impact should accelerate future tran-
sition towards renewable energy. The main argument behind this statement is that with renewable 
energy considered as a substitute for crude oil, increases in oil price uncertainty should encourage 
a substitution effect away from crude oil towards renewable energy sources, thus improving the 
financial performance of renewable energy companies. We read in a press article: “But perhaps the 
biggest factor is one of the least tangible: uncertainty... people working in renewables say that the 
volatility in oil is precisely the reason to go green — prices are more stable, with fewer ups and 
downs” (BBC news, 2015). However, despite some anecdotal evidence that rising oil price uncer-
tainty strengthens the dominance of the renewable energy industry in the global energy scene, and 
therefore its financial performance, an up-to-date empirical evidence is imperative to confirm or 
invalidate the hypothesis.

The rest of the paper is structured as follows. In section 2, we review and discuss the 
empirical literature related to the effects of oil price on the aggregate and industry-specific stock 
returns, while paying special attention to the relationship between oil prices and stock returns of 
clean energy and technology companies. Section 3 presents the bivariate GARCH-in-Mean struc-
tural VAR model, which is employed to investigate the direct effects of oil price uncertainty on the 
employed stock returns, as well as the impulse response functions that are employed to evaluate 
the effect of oil price uncertainty on the response of stock returns to an oil price shock. In Section 
4 we present the data and discuss the empirical findings, while in Section 5 we investigate whether 
the stock returns respond symmetrically or asymmetrically to oil price shocks of different signs and 
magnitudes, by using a formal symmetry test based on a nonlinear structural VAR model recently 
proposed by Kilian and Vigfusson (2011). The last section discusses the findings and concludes the 
paper.

2. REVIEW OF THE LITERATURE

2.1 Oil Prices and Stock Market Activity

Given the indispensable role of crude oil as an energy commodity in the world economy, 
but also as a financial asset since the early 2000s, there is a substantial and growing body of litera-
ture investigating the relationship between oil price shocks and stock market returns. On theoretical 
grounds, stock prices reflect the value of expected future earnings of companies that contingent on 
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several factors, such as relative sensitivity to changes in oil prices or dissimilar dependence on the 
oil industry, might be driven by oil price shocks. In regard to this, Chen et al. (1986) and Hamao 
(1988) study the effects of oil price changes on the U.S. and Japanese stock markets, respectively, 
and find no compelling evidence that supports such a relationship. Kling (1985) and Jones and Kaul 
(1996), in contrast, argue that changes in oil prices have a detrimental effect on stock market returns, 
while Sadorsky (1999) confirms that oil price fluctuations are imperative for understanding stock 
market development. Huang et al. (1996), however, find no negative relationship between changes 
in the price of oil futures and the returns of various stock indices; while Wei (2003) reports that the 
decline in the U.S. stock market in 1974 cannot be attributed to the 1973–1974 oil price increase. 
In fact, he suggests other possible factors, including the tightening of monetary policy. This view 
also receives strong support from Bjørnland (2009), who examines the small and open oil-exporting 
country of Norway, and argues that oil prices affect stock market returns indirectly, through mone-
tary policy.

A possible explanation for all the aforementioned studies not reaching a general consensus 
is that none of them, apart from Bjørnland (2009), differentiates oil-exporting from oil-importing 
countries. Wang et al. (2013) compare the relationship of oil price shocks and stock returns in 
several countries with different oil-dependence, and find that the explanatory power of oil prices 
shocks to stock return variations is stronger in oil-exporting than oil-importing countries, as well 
as the evidence of different magnitudes, durations, and directions of stock response. Arouri and 
Rault (2012) support this view through their study, with particular reference in the Gulf Corporation 
Countries, finding a positive relationship between oil price shocks and stock prices. From a similar 
point of view, Park and Ratti (2008) examine this relationship in the United States and 13 European 
countries, and report that a positive oil price shock has a statistically significant and negative effect 
on stock prices of all the oil-importing countries, but positive in the case of the oil-exporting country 
of Norway.

In a different study, Kilian and Park (2009) follow Kilian’s (2009) approach and decom-
pose oil price fluctuations into structural shocks, in order to study their effects on the U.S. stock mar-
ket returns. In doing so, they treat the price of crude oil as endogenous, and report that the response 
of stock prices to oil price shocks depends on the nature of oil price shocks. Some notable studies 
that build upon this framework are Apergis and Miller (2009), Güntner (2014), and Ahmadi et al. 
(2016). Nor do all the industry sectors respond in a similar way to oil price shocks (see Lee et al. 
(1995) and Davis and Haltiwanger (2001)), and therefore sectoral-based investigation is imperative 
for a better understanding of this relationship. The oil and gas sectors, as well as the technology 
sector, are investigated by Sadorsky (2001, 2003), while a large number of industries in the U.S. 
and China are explored by Elyasiani et al. (2011) and Caporale et al. (2015), respectively. All their 
findings underline the necessity of studying the various industries separately, mainly due to their 
different dependence on the oil industry.

A less extensive yet substantial body of literature investigates the impact of oil price vola-
tility, which is also a measure of uncertainty, on economic activity and stock market returns. Elder 
and Serletis (2010) were the first to examine the direct effects of oil price uncertainty on real eco-
nomic activity, and provide evidence of a negative and significant relationship. In addition, they 
find that increased oil price volatility amplifies the negative response of real economic activity to 
an unexpected increase in the real price of oil, while diminishing the positive response to an unex-
pected drop in the real price of oil. Lee et al. (1995) and Ferderer (1996) also underline the important 
role of oil price volatility in economic activity, while Sadorsky (1999) first explores its impact on 
the U.S. stock returns, and reports a statistically significant negative association. From a similar 
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point of view, Park and Ratti (2008) show that increased oil price volatility depresses real stock 
returns in the oil-importing European countries, while they document little evidence of asymmetric 
effects. Masih et al. (2011) also indicate the dominance of oil price volatility on real stock returns 
in South Korea, and comment on the need of firms for adjusting their risk management procedures 
accordingly. Diaz et al. (2016), from an international point of view, examine the relationship be-
tween oil price volatility and stock returns in the G7 economies, and provide evidence in favor of 
a negative association. This negative relationship, however, does not receive support by Alsalman 
(2016), who reports that uncertainty about the real price of oil has no statistically significant effect 
on U.S. real stock returns across all the investigated industries, except in the case of the coal sector. 
Moreover, she finds that aggregate stock returns respond symmetrically to positive and negative oil 
price shocks, but this symmetry does not hold across all sectors, thus highlighting the importance 
of studying each sector separately. Alsalman and Herrera (2015) provide further evidence in favor 
of symmetric response for aggregate stock returns, while Herrera et al. (2015) explain symmetric 
(asymmetric) responses through the statistically insignificant (significant) effect of oil price uncer-
tainty on investments.

2.2 Oil Prices and the Renewable Energy Sector

Despite the rapid growth of the renewable energy sector over the past decade in the face 
of rising oil prices and environmental concerns, little attention has been devoted to the relationship 
between oil prices and stock prices of renewable (or alternative) energy sector.4 To the best of our 
knowledge, Henriques and Sadorsky (2008) first discuss this gap in the literature, and investigate the 
dynamic relationships between alternative energy stock prices, technology stock prices, oil prices, 
and interest rates, through a four variable vector autoregression model. They find causality effects, 
in the spirit of Granger, propagating from both technology stock prices and oil prices towards stock 
prices of alternative energy companies, listed on major U.S. stock exchanges, while the latter stock 
prices are found to be more strongly correlated with stock prices of technology companies, rather 
than with oil prices. In fact, they find that oil prices have only a limited impact on renewable energy 
stock returns. However, Kumar et al. (2012) investigate this relationship, considering also the prices 
for carbon allowances, and provide evidence that rising oil prices have a significant positive impact 
on clean energy stock prices, contrary to carbon market prices. Similar to Henriques and Sadorsky 
(2008), they also support the view that clean energy and technology companies are considered by 
investors as similar asset classes. Broadstock et al. (2012) adopt time-varying conditional correla-
tion and asset pricing models to explore how the dynamics of international oil prices affect Chinese 
energy-related stock price returns. Specifically, they study the response of a composite energy index, 
as well as three sub-indices for oil and natural gas, coal and electricity, and new energy sector, to 
international oil price shocks, and report that oil price changes are a significant factor in energy-re-
lated stock price movements, especially after the 2008 financial crisis, whereas the new energy 
stocks are found to be the most resilient to oil price shocks.

Building upon the vector autoregressive analysis of Henriques and Sadorsky (2008), Man-
agi and Okimoto (2013) consider a Markov-switching model in order to explore possible structural 
changes and asymmetric effects among oil prices, technology stock prices, and clean energy stock 
prices. They provide evidence in favor of a structural change in the market in late 2007, and a pos-
itive relationship between oil prices and clean energy prices thereafter. Furthermore, they support 

4. The terms alternative energy, clean energy, renewable energy, and sustainable energy are used interchangeably when 
the discussion comes around to tracking stock indices or investment assets.
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the view of Henriques and Sadorsky (2008) and Kumar et al. (2012) for similarity between clean 
energy stock prices and technology stock prices, by arguing that technologies related to storage and 
other forms of clean energy benefit from a number of government policies. More recently, Reboredo 
(2015) investigates the dependence structure and conditional value-at-risk (CoVaR) measure of sys-
temic risk between oil prices and a set of global and sectoral renewable energy indices, through 
the employment of copulas for the period from December 2005 to December 2013. His empirical 
findings display that a time-varying average and symmetric tail dependence exists between oil re-
turns and several global and sectoral renewable energy indices, while oil price dynamics contribute 
around 30% to downside and upside risk of renewable energy companies.

From a different point of view, Inchauspe et al. (2015) examine the dynamics of excess 
returns for the WilderHill New Energy Global Innovation Index (NEX), which constitutes a major 
international benchmark index for renewable energy, through the use of a multi-factor asset pricing 
model with time-varying coefficients. They report a weak influence of oil price, relatively to the 
MSCI World Index and technology stocks, on NEX returns, although this effect becomes more influ-
ential after 2007. In fact, they find that NEX Index yields negative active returns after the financial 
crisis in 2009, and attribute this poor performance to the increased market uncertainty triggered 
by low oil price and government subsidy cuts. Bürer and Wüstenhagen (2009) also underline the 
important contribution of supportive policy environments to renewable energy investments, while 
Hofman and Huisman (2012) show that, after the financial crisis, 11 out of 12 renewable energy pol-
icies decreased significantly in popularity by venture capital and private equity investors. Decreased 
risk tolerance, higher capital demand and increased borrowing costs are mentioned as some of the 
contributing factors.

In recent years, a new strand of literature has emerged studying volatility spillovers be-
tween oil prices and renewable energy stock prices. Specifically, Sadorsky (2012a) employs dif-
ferent multivariate GARCH models (BEKK, Diagonal, CCC, and DCC) to examine conditional 
correlations and volatility spillovers between oil prices and the stock prices of clean energy and 
technology companies. He finds that stock prices of clean energy companies correlate more strongly 
with technology stock prices than with oil prices, that significant volatility spillovers exist among 
them, and that oil is a useful hedge for clean energy stocks. Extending this framework to include 
asymmetric effects, Wen et al. (2014) use a bivariate asymmetric BEKK model to investigate mean 
and volatility spillover effects between renewable energy and fossil fuel stock prices in China. They 
provide evidence that negative news about new energy and fossil fuel stock returns lead to larger 
return changes in their counter assets than positive news, that significant mean and volatility spill-
overs occur among them, and that new energy stocks are more speculative and riskier than fossil fuel 
stocks. Sadorsky (2012b) provides a comprehensive study on different factors of renewable energy 
company risk and highlights that renewable energy companies can be among the riskiest types of 
companies to invest in. In fact, he shows that oil price increases have a positive effect on company 
risk, whereas increases in company sales growth reduce systematic risk. Very recently, Reboredo 
et al. (2017) investigate dependence and causal effects between oil price dynamics and renewable 
energy returns for the period 2006–2015. Through the use of continuous and discrete wavelets and 
linear and non-linear Granger causality tests, they find evidence of non-linear causality running 
from renewable energy indices to oil prices, and mixed evidence of causality propagating from oil 
prices to renewable energy prices.

Yet, no study has investigated the relationship between oil price uncertainty and the stock 
prices of renewable energy companies, to the best of our knowledge. The purpose of the paper is to 
fill this void. A better understanding of the relationship between oil price uncertainty and financial 
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performance of the renewable energy sector is imperative for understanding and foreseeing the evo-
lution of the renewable energy sector in the years to come.

3. THE STRUCTURAL GARCH-IN-MEAN VAR

In this paper we employ a bivariate monthly structural VAR model, modified to accom-
modate GARCH-in-Mean errors as inElder (2004) and Elder and Serletis (2011), in logarithmic oil 
price changes and stock returns. See also Elder and Serletis (2011), Chang and Serletis (2018), and 
Serletis and Mehmandosti (2018). The structural system is represented as follows

1/2

=1
= −+ + +∑ ∆Γ ΛBy y H α

p

t i t i lno tt
i  

(1)

1| (0, )−Ω Ht t tiid N   (2)

where the vector yt includes the change in the price of oil (∆ tlno ) and the stock returns (∆ tlnz ), α  is a 
parameter vector, B and Γi are 2 × 2 matrices representing the contemporaneous and lagged effects, 
and t denotes a vector of serially and mutually uncorrelated structural shocks. Moreover, Λ is a 
vector of coefficients that measures the effect of oil price volatility on the conditional mean of the 
employed series, 1/2

∆H lnot
 is the conditional standard deviation of oil, 1−Ωt  denotes the information set 

at time 1−t , and Ht is the covariance matrix. The system is identified by assuming that the diagonal 
elements of B are unity, that B is a lower triangular matrix, and that the structural disturbances, t, 
are contemporaneously uncorrelated.

The conditional variance is modeled as bivariate GARCH

=1 =1
( ) = ( ) ( )− − −′+ +∑ ∑H A F G H 

s r

t j t j t j i t i
j i

diag diag diag
 

(3)

where diag is the operator that extracts the diagonal from a square matrix. In fact, we assume that 
the conditional variance of ,i ty  depends only on its own past squared errors and its own past con-
ditional variances, so that parameter matrices Fj and Gi are also diagonal.5 Moreover, we estimate 
the variance equation (3) with = = 1s r , since the parsimonious GARCH(1,1) model has been found 
to outperform other GARCH configurations, under the most general conditions [see Hansen and 
Lunde (2005)]. Low-order GARCH models, and particularly GARCH (1,1), receive also support by 
Bollerslev et al. (1992).

We estimate the model by full information maximum likelihood, thus avoiding Pagan’s 
(1984) generated regressor problems associated with estimating the variance function parameters 
separately from the conditional mean parameters. Consistent with Elder (2004) and Elder and Ser-
letis (2011), we estimate the bivariate GARCH-in-Mean VAR model described by equations (1)–(3), 
by full information maximum likelihood, and by numerically maximizing the log likelihood func-
tion

2 11 1 1= (2 ) | | | | ( )
2 2 2 2

π −′− + − −B H t t t t t
nl ln ln ln H

 
(4)

with respect to the structural parameters , , , , , ,α Γ ΛB A F  and G.

5. This assumption can be lifted if the researcher is specifically interested in how the lagged volatility of one variable 
might relate to the conditional variance of another.
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In doing so, we set the pre-sample values of the conditional variance matrix H0 to their 
unconditional expectation and condition on the pre-sample values of yt. To ensure that Ht is posi-
tive definite, we restrict > 0A , 0≥F , and 0≥G , as in Engle and Kroner (1995). By satisfying the 
standard regularity conditions, full information maximum likelihood estimates are asymptotically 
normal and efficient, with the asymptotic covariance matrix given by the inverse of Fisher’s infor-
mation matrix. For mode details, see Elder (2004) or Elder and Serletis (2011). It is worth men-
tioning that our model does not capture the time-varying relationships between the employed data 
series, while a longer analysis period about the performance of the renewable energy sector would 
benefit such a study.

To evaluate the effect of oil price uncertainty on the response of stock returns to an oil price 
shock, we generate impulse response functions. These are based on an oil price shock equal to the 
unconditional standard deviation of the change in the price of oil and are calculated for the GARCH-
in-Mean VAR as in Elder (2003)

1
, , 1 1 1 1

1 0
=0,

( | , )
= [ ( ) ] ( ) .τ

τ
τ

−
+ − − − − −∂ Ω

+ +
∂ ∑ Θ Λ ΘB F G F B
ε

ι ι
ε

k
j t k i t t k

k
i t

E y

 
(5)

where 1ι  denotes , 1 ,[ ( ) | , ] /−′∂ Ω ∂ ε εt t i t t i tE vec , which is an 2 1×N  vector with ,2ε i t in the ( 1)− +N i i 
spot and 0s elsewhere. Moreover, 0ι  denotes ,/∂ ∂ εt i t, which is an 1×N  vector with ,ε i t in the ith spot 
and 0s elsewhere. In fact, Elder (2003) notes that equation (5) is analogous to the impulse response 
function of an orthogonalized VAR. The second term on the right side of the equation captures the 
usual direct effect of a shock ,ε i t on the conditional forecast of , +j t ky  while the first term captures the 
effect on the conditional forecast of , +j t ky  through the forecasted effect on the conditional variance. 
It is noteworthy that as the horizon increases the first term shrinks to the zero matrix since the eigen-
values of +F G are constrained to be lower than one. See Elder (2003) for more details.

In particular, the impulse responses are simulated from the maximum likelihood estimates 
of the model’s parameters, while the one-standard error confidence bands are generated by the 
Monte Carlo method as described in Hamilton (1994, p. 337).6 The responses are constructed based 
on parameter values drawn randomly from the sampling distribution of the maximum likelihood 
parameter estimates, where the covariance matrix of the maximum likelihood estimates is derived 
from an estimate of Fisher’s information matrix. Finally, we plot the impulse responses of stock re-
turns to positive and negative oil price shocks, after accounting for oil price uncertainty, thus gaining 
a better insight into whether responses are symmetric or asymmetric.

4. THE DATA AND EMPIRICAL EVIDENCE

This study uses monthly closing prices of three clean energy indices, namely, WilderHill 
Clean Energy Index (ECO), WilderHill New Energy Global Innovation Index (NEX), and S&P 
Global Clean Energy Index (SPGCE), as well as the technology index, NYSE Arca Technology In-
dex (PSE). Specifically, ECO is a modified equal dollar-weighted index comprised of 52 companies 
which are active in the renewable energy sector, and whose activities stand to benefit substantially 
from a societal transition toward the use of cleaner energy and conservation. This index is the oldest 
index devoted merely to tracking clean (renewable) energy companies, and it is disseminated by the 
American Stock Exchange (AMEX). NEX is a modified dollar-weighted index comprised of pub-
licly traded companies whose businesses focus on renewable energy and climate change mitigation 

6. The confidence intervals are generated by the Monte Carlo method with 1000 simulations.
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technologies. Most of the stocks are listed on exchanges outside the United States, and therefore the 
correlation between the index and ECO is low. NEX constitutes the first and leading global index for 
clean, alternative, and renewable energy. SPGCE is a weighted index of 30 companies from around 
the world that are engaged in clean energy production, and clean energy equipment and technology 
business.

Investments in renewable energy companies, however, may be considered to be similar 
to those of other high technology companies (Henriques and Sadorsky, 2008). This is an argument 
actually supported by the stock market behavior in the late 1990s when a large number of fuel cell 
companies were adversely affected by the technology stock market bubble burst. Furthermore, due 
to technology innovation, the capital cost of renewable energy sources has declined substantially, 
thus reducing previous investments barriers and playing an important role in the future development 
of renewable energy sector. Therefore, we also employ in our analysis the NYSE Arca Technol-
ogy Index, which is a price weighted index devoted solely to technology, as a proxy for the stock 
market performance of technology sector. In particular, it is composed of 100 leading technology 
companies that are active in 15 different industries, including computer hardware, software, data 
storage and processing, electronics, semiconductors, telecommunications, and biotechnology. Fig-
ures 2b–2e illustrate the development of each of the indices alongside with its squared returns. 
Unlike the PSE index that fully recovers from the losses associated with the global financial crisis 
in 2008–2009, while exhibiting a clear upward trend for the rest of the investigated period, all three 
clean energy indices remain at historically low levels. In particular their significant drop in value 
during the financial crisis is partly reversed in the next year, before another, but smaller, plunge oc-
curs between 2011 and 2012. Since this last decline, only the NEX index rebounds completely and 
continues fluctuating at the post-financial crisis levels. All stock indices exhibit low price volatility, 
at least compared to the oil futures price.

In addition, the excess return on the market, which is defined as the value-weighted return 
on all NYSE, AMEX, and NASDAQ stocks from the Center for Research in Security Prices (CSRP) 
minus the 1-month Treasury bill rate, is used as a proxy for the aggregate U.S. stock returns. The 
primary reason for doing so is to examine the effect of oil price uncertainty on the U.S. stock returns 
at the aggregate level, as well as at the sectoral level of the renewable energy sector. Thereby we 
are able to gain a better understanding of how differently oil price uncertainty affects the financial 
performance of the renewable energy sector compared to the aggregate stock market. For the price 
of oil, we use the nearest futures contract to maturity on the West Texas Intermediate crude oil fu-
tures contract, for a number of reasons. Firstly, due to temporary shortages or surpluses, spot prices 
are more affected by short-run price fluctuations than futures prices (Sadorsky, 2001). Secondly, if a 
firm engages in hedging, the effectiveness of such hedging activities is evaluated by the variability 
of futures oil prices (Elyasiani et al., 2011). Lastly, it is the most extensively traded oil futures con-
tract in the world, and therefore constitutes a benchmark for the oil market and commodity portfolio 
diversification (Sadorsky, 2012b). Our data sample covers the period from May 1983, which coin-
cides with the availability of our proxy for the oil price, to December 2016. For each data series, we 
calculate the continuously compounded monthly returns as 1100 ( / )−× t tln p p , which we employ in 
the rest of our analysis.

It is worth mentioning here an interesting feature of the data related to the contemporane-
ous correlation between the different price series. We present these correlations in Table 1 for the 
first differences of the log levels, since our primary object of interest is stock returns. In order to 
determine whether these correlations are statistically significant, we follow Pindyck and Rotemberg 
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(1990) and we perform a likelihood ratio test of the hypotheses that the correlation matrices are 
equal to the identity matrix. The test statistic is

/22 (| | )− Nln R

where | |R  is the determinant of the correlation matrix and N is the number of observations. The test 
statistic is distributed as 2χ  with ( 1) / 2−q q  degrees of freedom, where q is the number of series. The 
test statistic is equal to 939.001 with a p-value of 0.000 for the first differences of the logs, and there-
fore we can clearly reject the hypothesis that these series are uncorrelated. In addition, we notice that 
some of the correlation patterns documented in Table 1 also manifest in the graphical presentation of 
the employed series in the different plots in Figure 2. The four scatterplots between the sub-indices 
and the WTI crude oil price illustrated in Figure A.9 also provide evidence of correlation between 
the data series, thus supporting the previous conclusion that the series are correlated. Moreover, 
we employ two stock indices, namely the Dow Jones Industrial Average (DJIA) and the S&P 500 
from Yahoo! Finance, and construct the scatterplots between the renewable sub-indices and each 
of the stock indices in Figures A.10 and A.11, respectively. The patterns observed between each of 
the three renewable sub-indices and the Dow Jones Industrial Average (DJIA) are almost identical, 
displaying a clear positive correlation, in the sense that as one series increases the other one also 
increases. However, the lower part of the corresponding scatterplots suggests no relationship be-
tween the series. This can probably be explained by the fact that none of the renewable sub-indices 
recovers from the losses associated with the global financial crisis in 2008–2009, and thereby they 
remain at historically low levels. On the contrary, the PSE technology index recovers fully from the 
financial crisis and therefore the corresponding scatterplot between the technology index and the 
Dow Jones Industrial Average (DJIA) displays merely a strong positive correlation. Same conclu-
sions are derived for the case of the S&P 500 index in Figure A.11.

Before we continue to the next step of modeling, we conduct some unit root and stationary 
tests in each of the employed return series in Table 2, in order to test for the presence of a stochas-
tic trend in the autoregressive representation of the series. All three tests, namely, the Augmented 
Dickey-Fuller (ADF) test [see Dickey and Fuller (1981)], the Dickey-Fuller GLS (DF-GLS) test 
[see Elliot et al. (1996)] and the KPSS test [see Kwiatkowski et al. (1992)] provide evidence that 
all return series are stationary, or integrated of order zero, I(0). It should be noted that the Schwarz 
information criterion (SIC) is used to select the lag length in both the ADF and DF-GLS regres-
sions, assuming a maximum lag length of 4 months for each series, while the Bartlett kernel for the 
KPSS regressions is determined using the Newey-West bandwidth (NWBW). Moreover, in Table 
3 we conduct a series of Ljung-Box (1979) tests for serial correlation, in which the Q-statistics are 
asymptotically distributed as 2 (4)χ  on the null hypothesis of no autocorrelation. Certainly, there is 
significant serial dependence in the data. In addition, a Ljung-Box test for serial correlation in the 

Table 1: Contemporaneous Correlations
 First Differences of Log Levels

Series ECO NEX PSE SPGCE WTI

ECO 1 0.931 0.767 0.907 0.434
NEX 0.931 1 0.798 0.959 0.490
PSE 0.767 0.798 1 0.721 0.328
SPGCE 0.907 0.959 0.721 1 0.440
WTI 0.434 0.490 0.328 0.440 1

x2(10)=939.001

Note: Monthly data from 2003:12 to 2016:12.
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squared data provides evidence in favor of conditional heteroscedasticity, which is also confirmed 
by an ARCH test, distributed as a 2 (4)χ  on the null hypothesis of no ARCH effects.

Motivated by the aforementioned discussions and the dynamic properties of the employed 
data, we estimate the bivariate GARCH-in-Mean structural VAR model given by equations (1)-(3), 
with one lag as suggested by the Schwarz information criterion (SIC), and using monthly obser-
vations on the log change in the price of oil and the log change in the price of each of the indices 
examined in this paper. To evaluate the efficiency of the model specification in terms of predictabil-
ity, and its consistency with the data, we calculate and compare the SIC for the GARCH-in-Mean 
VAR model and the conventional homoskedastic VAR model. Based on the values of the Schwarz 
information criterion in Table 4, the bivariate GARCH-in-Mean VAR model is preferred over the 
homoskedastic VAR model in most of the cases.

The parameter estimates of the mean and variance functions, for the different sectors, are 
reported in Tables 5–6, together with the t-statistics. We find statistically significant evidence of 
ARCH effects in the price of oil and GARCH effects in the stock returns, which provide further sup-
port for our proposed model. Specifically, in the case of the bivariate GARCH-in-Mean VAR model 
for the oil price and aggregate stock returns the coefficients on the lagged squared errors and lagged 
conditional variance for both the price of oil and stock returns are highly significant, while their sum 
is equal to (0.268+0.603)=0.871 and (0.118+0.852)=0.970, respectively. These results provide evi-

Table 2: Unit Roots and Stationary Tests
 Test

Series ADF DF-GLS KPSS Decision

AGG –18.717* –5.676* 0.057 I(0)
ECO –10.154* –10.107* 0.063 I(0)
NEX –9.351* –9.070* 0.080 I(0)
PSE –14.638* –13.708* 0.077 I(0)
SPGCE –8.264* –3.282* 0.182 I(0)
WTI –14.600* –13.821* 0.075 I(0)

Note: An asterisk indicates significance at the 5% level.

Table 3:  Tests for Serial Correlation and Conditional 
Heteroskedasticity

Series Q(4) Q2(4) ARCH(4)

AGG 2.777 (0.596) 13.527 (0.009) 10.762 (0.029)
ECO 17.059 (0.002) 8.926 (0.063) 10.445 (0.034)
NEX 27.908 (0.000) 9.577 (0.048) 10.718 (0.030)
PSE 37.651 (0.000) 17.017 (0.002) 13.515 (0.009)
SPGCE 25.909 (0.000) 14.220 (0.007) 15.616 (0.004)
WTI 42.656 (0.000) 69.517 (0.000) 52.134 (0.000)

Note: Numbers in parentheses are marginal significance levels.

Table 4: Model Specification Tests with WTI Crude Oil Price
Model Homoskedastic VAR Bivariate GARCH-M VAR 

AGG - WTI 5203.715 5143.391
ECO - WTI 2696.742 2704.585
NEX - WTI 2614.204 2615.708
PSE - WTI 5265.364 5208.170
SPGCE - WTI 2191.582 2194.203

Note: This table computes the Schwartz Information Criterion for the conventional homoskedastic 
VAR and the bivariate GARCH-in-Mean VAR.
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dence that the volatility process for the crude oil price, and also that for the aggregate stock returns, 
is very persistent. The primary coefficient of interest, however, from the bivariate GARCH-in-Mean 
VAR relates to the effect of uncertainty about the change in the price of oil on stock returns. This is 
the coefficient on the conditional standard deviation of the log change in the price of oil in the stock 
return equation, 21λ , and the null hypothesis is that the value of it is equal to zero. The point estimates 
for the coefficient on oil price uncertainty are reported in Table 6, and show that there is not enough 
statistical evidence to reject the null hypothesis that the value of 21λ  is zero.This finding holds across 
all industry sectors, with the coefficient on oil price uncertainty having a positive but statistically 
insignificant effect on the renewable and technology industries, and insignificant negative effect 
on the aggregate stock market. The latter result is consistent with the findings of Alsalman (2016). 
Furthermore, we investigate the robustness of our results to alternative measures of the oil price. In 
doing so, we use the composite refiners’ acquisition cost of crude oil (RAC), as compiled by the U.S. 
Department of Energy, and we reach the same conclusion.

In order to investigate the effect of incorporating oil price uncertainty on the dynamic 
response of stock returns to an oil price shock, we plot the impulse responses for positive and neg-
ative oil price shocks in Figures 3–7, over a horizon of twelve months. These are simulated from 
the maximum likelihood estimates of the model’s parameters. Accounting for the effect of oil price 
uncertainty, we find that a positive shock in oil prices tends to significantly increase the stock returns 
of the three renewable energy indices, namely ECO, NEX, and SPGCE, immediately, while this 
positive effect decreases sharply within the first two months (see the first panel of Figures 3, 4, and 
6). Specifically, the SPGCE index experiences an increase in its monthly rate of change of about 100 
basis point after one month, followed by a decline in the second month by about 50 basis points. It 
is worth mentioning that the positive effect is quite similar but less prominent for both the NEX and 
ECO indices. The dynamic effects of the positive oil price shock on the SPGCE and NEX indices are 

Table 5: Parameter Estimates for the Variance Function
Equation Constant 2

1−t  
2

1−Ht

AGG 0.675 (1.865) 0.118 (3.587) 0.852 (23.804)
ECO 5.295 (1.396) 0.116 (1.817) 0.798 (8.561)
NEX 5.349 (0.914) 0.177 (1.577) 0.694 (2.954)
PSE 1.483 (1.586) 0.156 (2.940) 0.808 (12.720)
SPGCE 4.323 (1.183) 0.086 (1.566) 0.824 (8.172)
WTI 9.119 (2.768) 0.268 (4.509) 0.603 (7.662)

Note: These are the parameter estimates for the free elements in the F and G matrices 
from the bivariate GARCH-in-Mean structural VAR model given by Equations (1)–
(3). Asymptotic t-statistics are in parentheses.

Table 6:  Coefficient Estimates on Oil 
Price Volatility

Equation 1/2
∆H lnot  t-statistic

AGG –0.040 –0.483
ECO 0.154 0.459
NEX 0.341 1.010
PSE 0.002 0.016
SPGCE 0.287 0.940

Note: These are the coefficient estimates for the free 
elements in the Λ vector from the bivariate GARCH-
in-Mean structural VAR model. 1/2

∆H lnot
 indicates the 

conditional standard deviation of the log change in 
the price of oil.
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statistically significant for the first one and a half month, while for the ECO index it is statistically 
significant only for the first month.

In the second panel of Figures 3, 4, and 6 we report the impulse responses of the same 
three indices to a negative oil price shock, again accounting for the effects of oil price uncertainty. 
As can be seen, the dynamic effect of the negative oil price shock on the ECO index is not statisti-
cally significantly different from zero after one month. However, a negative oil price shock induces 

Figure 3: Impulse response functions of the WTI-ECO structural VAR
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a positive effect on the NEX index of about 25 basis points the first month, followed by a slight 
increase the second month. In a similar way, the SPGCE index undergoes a jump in its monthly 
rate of change of about 50 basis points after two months, and decreases slowly towards zero in the 
following months. Both NEX and SPGCE indices are statistically significantly different from zero 
for the first three and four months, respectively, since the one-standard error bands lie clearly above 
the zero line.

Figure 4: Impulse response functions of the WTI-NEX structural VAR
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The impulse responses of technology stock returns (PSE), however, are more similar to 
those of the aggregate stock returns. As can be seen in the first panel of Figures 5 and 7, a positive 
oil price shock leads to a decline in both stock returns after one month, followed by an increase in 
the second month. Impulse responses of aggregate stock returns are found to have a more rapid 
recovery rate than technology stock returns. However, the dynamic effects of the positive oil price 
shock on both technology and aggregate stock returns are not statistically significant different from 

Figure 5: Impulse response functions of the WTI-PSE structural VAR
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zero at all horizons. In contrast, a negative oil price shock tends to induce a jump in both technology 
and aggregate stock returns after one month, which is followed by a slow decline (see the second 
panel of Figures 5 and 7). The dynamic effects of the negative oil price shock on both returns are 
however not statistically significantly different from zero. Finally, a visual inspection of the impulse 
responses in Figures 3–7 does not provide clear evidence on whether the responses of the three 
renewable energy stock market returns to positive and negative oil price shocks are symmetric or 

Figure 6: Impulse response functions of the WTI-SPGCE structural VAR
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asymmetric, while those of the technology and aggregate returns are more likely to be symmetric. 
Symmetry in the responses of the aggregate returns to oil price shocks is consistent with the findings 
of Alsalman (2016).

Next, we compare the impulse responses of the different stock returns to a positive oil price 
shock as estimated by our model with that from a model in which oil price uncertainty is restricted 
from entering the stock return equation (that is, 21λ =0). We compare these responses in the third 
panel of Figures 3–7, with the error bands being suppressed for clarity, and conclude that account-

Figure 7: Impulse response functions of the WTI-Aggregate structural VAR
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ing for oil price uncertainty tends to enhance the positive dynamic responses of the three renewable 
energy indices to a positive oil price shock, while it amplifies the negative dynamic response of the 
aggregate returns to a positive oil price shock. Finally, the responses of technology index returns 
from the two models are found identical, thus providing evidence that uncertainty about the price of 
oil does not disturb the dynamic response of technology returns to a positive oil price shock.

5. SYMMETRY TEST

We have performed an impulse response analysis to assess whether the relationship be-
tween crude oil prices and stock returns of clean energy and technology companies is symmetric 
or asymmetric, and we have provided evidence in favor of symmetric impulse responses of stock 
returns to oil price shocks. To investigate the robustness of these results, we employ an impulse 
response based test, recently introduced by Kilian and Vigfusson (2011).

The Kilian and Vigfusson (2011) symmetry test, based on impulse response functions, 
involves estimating the following nonlinear structural VAR model

10 11 12 1
=1 =1

= ( ) ( )α β β− −∆ + ∆ + ∆ +∑ ∑
p p

t t j t j t
j j

lno j lno j lnz u
 

(6)

20 21 22 21 2
=0 =1 =0

= ( ) ( ) ( )α β β δ− − −∆ + ∆ + ∆ + +∑ ∑ ∑ 

p p p

t t j t j t j t
j j j

lnz j lno j lnz j o u
 

(7)

where to  is Hamilton’s (2003) net oil price increase over the previous twelve months, defined as

1 2 12= max[0, max{ , ,..., }]− − −−t t t t to lno lno lno lno

where to  denotes the price of oil.
The null hypothesis of symmetric impulse responses of ∆ tlnz  to positive and negative oil 

price shocks of the same size is

0 : ( , ) = ( , ) for = 0,1,..., .δ δ− −g gH I h I h h H  (8)

It tests whether the responses of ∆ tlnz  to a positive shock in the oil price growth rate of size δ  is 
equal to the negative of the response of ∆ tlnz  to a negative shock in the oil price growth rate of the 
same size, δ− , for horizons = 0,1,...,h H . See Kilian and Vigfusson (2011) for a more detailed dis-
cussion of the methodology.

Since the Kilian and Vigfusson (2011) test depends on the size of the shock, δ , we il-
lustrate in Figure 8 the empirical responses of the different logarithmic stock returns to one- and 
two-standard-deviation oil price shocks of positive and negative signs, in a model with one lag and 
considering the twelve-month net oil price increase. Hence, the figure depicts the response of the 
logarithmic stock returns to a positive shock ( , )δgI h , and the negative of the response to a negative 
shock, ( , )δ− −gI h . The impulse responses are derived for twelve months based on 10,000 simula-
tions and 50 histories.

As can been seen from the different plots in Figure 8, the responses of the different logarith-
mic stock returns to positive shocks are not significantly different than those to negative shocks, for 
both small (one-standard-deviation) and big (two-standard-deviation) oil price shocks. In addition, 
we report the p-values of the null hypothesis (8) in Table 7, for both small shocks ( ˆ=δ σ ) and large 
shocks ( ˆ= 2δ σ ). By looking at the results, we conclude that the null hypothesis of a symmetric 



356 / The Energy Journal

All rights reserved. Copyright © 2019 by the IAEE.

Fi
gu

re
 8

: W
T

I c
ru

de
 o

il 
pr

ic
e 

re
tu

rn
s a

nd
 re

tu
rn

s o
f s

ub
-in

di
ce

s



Oil Prices and the Renewable Energy Sector / 357

Copyright © 2019 by the IAEE. All rights reserved.

relationship between the oil prices and each of the examined stock returns cannot be rejected at the 
5% significance level.

6. CONCLUSION

In the context of a bivariate structural VAR model, which is modified to accommodate 
GARCH-in-Mean errors, we investigate the relationship between oil prices and stock returns of 
clean energy and technology companies. Specifically, we employ monthly data over the period from 
May 1983 to December 2016, and estimate the model taking a full information maximum likelihood 
approach, thus avoiding Pagan’s (1984) generated regressor problems. Furthermore, we conduct an 
impulse response analysis to assess whether the relationship between crude oil prices and stock re-
turns of clean energy and technology companies is symmetric or asymmetric, and provide evidence 
of symmetric stock responses to oil price shocks. More importantly, we investigate the effects of 
uncertainty about the change in the price of oil on the employed stock returns, and we find that oil 
price uncertainty has a positive but statistically insignificant effect on the renewable energy and 
technology stock returns, and an insignificant negative effect on the aggregate stock returns. Our 
results are robust to alternative model specifications and stock prices of clean energy companies.

The resilience of renewable energy stock returns to oil price uncertainty effects may stem 
from the fact that the economics of the renewable energy sector have become very competitive in 
recent years, and therefore renewables can compete successfully with oil, even when the price of oil 
fluctuates around the recent low levels. Another possible explanation might be the fact that oil is not 
predominantly used in electricity generation, while any possible spillover effect from oil to other 
primary sources of electricity generation such as, for example, coal and gas, seem not to be prom-
inent enough in order to affect renewables indirectly. Furthermore, resilience of renewable energy 
sector can be explained by the fact that developing countries such as, for instance, China, India, and 
Middle East countries, experience rapid economic growth that is accompanied by growing energy 
demand, and finally, severe environmental externalities. Hence, under different pressures of envi-
ronmental pollution, such as, air pollution and water contamination, they endeavor to reduce fossil 
fuel consumption and expand their renewable energy industry. Finally, the insignificant effect of oil 
price uncertainty on the employed stock returns might be a possible explanation for the symmetric 
stock responses.

Table 7: p-values for 0 : ( , ) = ( , ), = 0,1,...,12δ δ− −g gH I h I h h
 ECO NEX PSE SPGCE AGG

h σ̂ ˆ2σ σ̂ ˆ2σ σ̂ ˆ2σ σ̂ ˆ2σ σ̂ ˆ2σ

0 0.306 0.299 0.460 0.465 0.221 0.224 0.253 0.250 0.714 0.719
1 0.325 0.310 0.222 0.202 0.089 0.088 0.173 0.155 0.781 0.779
2 0.522 0.505 0.352 0.341 0.183 0.179 0.255 0.240 0.919 0.917
3 0.675 0.656 0.508 0.493 0.205 0.222 0.255 0.249 0.932 0.926
4 0.791 0.781 0.636 0.630 0.314 0.332 0.355 0.345 0.974 0.971
5 0.819 0.827 0.683 0.670 0.368 0.390 0.457 0.444 0.988 0.985
6 0.872 0.880 0.785 0.773 0.433 0.418 0.567 0.556 0.995 0.993
7 0.904 0.907 0.861 0.852 0.541 0.525 0.654 0.645 0.998 0.997
8 0.944 0.946 0.886 0.866 0.632 0.604 0.739 0.736 0.999 0.999
9 0.916 0.949 0.901 0.889 0.721 0.695 0.800 0.804 1.000 1.000
10 0.921 0.971 0.917 0.918 0.772 0.714 0.829 0.841 1.000 1.000
11 0.853 0.885 0.938 0.947 0.835 0.786 0.849 0.876 1.000 1.000
12 0.898 0.923 0.961 0.954 0.884 0.844 0.874 0.866 1.000 1.000

Note: p-values are based on the 2
1χ +h  distribution.
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