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ABSTRACT

There is an emerging literature estimating the marginal cost of carbon mitigation
in China using distance function approaches; however, empirical estimates vary
widely in magnitude and variation, which undermines support for policies to curb
carbon emission. Applying three commonly used distance functions to China’s
provincial data from 2001 to 2010, we show that the variability can be partially
explained by the difference in the input/output coverage and whether the esti-
mated marginal abatement cost (MAC) is conditional on the abatement of other
correlated pollutants. We also argue that the substantial heterogeneity in abate-
ment cost estimates could be related to an economic interpretation that radial
measures reflect the short-run MACs while non-radial measures reflect the long-
run MACs. Our mean short-run MAC for carbon is 20 US$ per tonne, an amount
that is very close to the carbon prices observed in China’s recently launched pilot
markets.
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INTRODUCTION

Climate change continues to be high on the international political agenda. As the world’s
top carbon emitter, China is a key player in climate negotiations and has been facing mounting
domestic and international pressure to commit to a mandatory emission target. A sound understand-
ing of the level and heterogeneity of marginal carbon abatement cost (MAC) across localities,
sectors or even firms would inform policy makers about the potential cost advantage of a market
based approach over the traditional command and control approach (Newell and Stavins, 2003).

The literature on the mitigation costs of greenhouse gases (GHG) has been extensively
reviewed (Repetto and Austin, 1997; Weyant and Hill, 1999; Lasky, 2003; Fischer and Morgenstern,
2005; Kuik et al., 2009). A large part of this existing literature is based on the use of integrated
systems forecasting models that derive the MAC of GHG emissions as shadow prices representing
the economic growth that would be forgone in the pursuit of a Kyoto-based mitigation or stabili-
zation target. These prices are often estimated for various future time horizons and for different
sets of constraints and assumptions about the economic system. Such shadow price information is
most useful for long-term planning and policy-making.

Another strand of the literature estimates the MACs as the shadow price of pollution
mitigation within a distance function framework. The approach is simpler. The distance function is
a generalization of the production function and provides a means of representing a technology that
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produces multiple outputs (in this case, good and bad outputs). The estimated function captures the
trade-offs or marginal rate of transformation (MRT) between outputs. Reduction in undesirable
outputs (or abatement) is costly to the producer as it would require the use of more inputs or
reductions in desirable outputs as inputs are diverted to abatement activities. Thus one can measure
the cost of abatement as the desirable output that would be forgone in the process of reducing an
undesirable output by one unit. This shadow price can be multiplied by the price of the desirable
output to provide an empirical and monetary measure of the cost of abatement. The distance function
models use historical data and do not need to make widely varying and strong assumptions about
future economic development and technological progress. As these estimates reflect recent evolu-
tions in marginal abatement costs (MACs), they are more useful for identifying existing low cost
opportunities for carbon reduction and for evaluating the potential cost savings from market-based
policy instruments. That is, they are more relevant for immediate use or policy design exercises.

However, existing empirical estimates of the MAC of GHG mitigation in China obtained
from these approaches vary widely and range from a few to thousands of US dollars per metric
tonne. This variability in cost estimates undermines the scientific support for policy change as policy
makers are usually reluctant to implement a mandatory GHG mitigation policy without a firm
understanding of the true costs. In the last few years, there have appeared a few studies investigating
China’s GHG MAC estimates. Du et al. (2013) provides a thorough review of this literature which
has mainly focused on carbon dioxide with a minor proportion of it investigating sulfur dioxide
mitigation costs. Our study builds on this literature but makes a number of original contributions.
We show that such variability can be explained by the differences in the coverage of inputs and
outputs, the set of assumptions made on the production technology, the constraints imposed by
various distance functions, and whether the MAC estimated is conditional or unconditional. We
also compare estimated MACs with observed carbon prices from China’s recently piloted carbon
trading markets.

Firstly, given China’s heavily coal-dependent energy structure and the way that carbon
emissions were calculated in empirical literature, one would expect energy consumption and carbon
emissions to be highly correlated. This high correlation would have significant distorting impact
on the MAC estimates in studies including energy as a good output and carbon as a bad output. In
cases where the correlation is high, it would be difficult to reliably estimate MACs. However, one
can get around this problem by aggregating inputs or removing the energy variable to allow for
estimation and comparison across different approaches.

Secondly, all previous studies have either used primary energy use as the energy input or
not provided a clarification of their energy input definitions. In this paper, we define energy input
as final rather than primary energy consumption. It is important to make this clarification and use
final rather than primary energy as the former is a more appropriate measure of the actual energy
contributing to production. Using primary energy would overestimate the actual energy input in
some provinces and underestimate it in others because energy demand and supply are not well
matched across Chinese provinces. Some provinces produce and export while others import sub-
stantial secondary energy. In energy exporting provinces, primary energy used to produce secondary
energy that is then exported should be counted as a raw material rather than as energy input. At
the same time, imported secondary energy should be counted as part of actual energy input use in
energy-importing provinces. In short, it is the final consumption, not the primary use, which defines
the amount of energy that contributes to the final economic production of a province. Studies also
differ in the calculation of GHG emissions. Some only account for energy-related GHG emissions
while others also include emissions from production processes. The scope of emissions considered
also influences the estimated MAC.
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Thirdly, in recent years, economists have started to move beyond evaluating regulatory
effects on a pollutant-by-pollutant basis since the interaction between different pollutant mitigation
activities is important (Greenstone, 2003; Burtraw et al., 2003; Gamper-Rabindran, 2006; Considine
and Larson, 2006). However, all previous studies on China’s MAC of GHG mitigation have focused
on a single undesirable output — either carbon dioxide or sulfur dioxide. Environmental policies
often require simultaneous reduction of several pollutants. The MAC estimated from a distance
function including a single bad output would be less informative about the overall compliance cost
of such policies. The MAC estimated as such is unconditional marginal abatement cost and it is
not appropriate to consider the sum of MACs estimated individually as the overall compliance cost
of simultaneous mitigation targets. Some airborne pollutants are highly correlated (i.e. jointly pro-
duced). For example, given China’s heavily coal-dependent energy structure, a policy aiming to
mitigate carbon emissions will often have the co-benefit of mitigating other pollutants such as sulfur
dioxide, soot and dust. This will have a significant impact on the estimation of MAC. If multiple
pollutants are jointly produced then the productivity impact that we associated with one pollutant
should also be associated with other pollutants. The unconditional MAC of a pollutant may be very
different from the MAC estimated conditional upon the emissions of other correlated pollutants
remaining unchanged. A distance function including multiple bad outputs, on the other hand, allows
estimation of conditional marginal costs and the overall cost of meeting simultaneous mitigation
targets.

Lastly, the choice of distance function in the empirical literature is largely arbitrary. How-
ever, the MACs estimated are shown to be very much sensitive to the parameterization, the as-
sumptions and constraints imposed, and the mapping schemes which are the paths in which the
inputs or outputs are scaled toward the technology frontier in various distance functions (Vardanyan
and Noh, 2006). Studies that do provide justifications for their choices often fail to consider the
nature of the policy environment and associated interpretation of their results. Because the estimated
MAC:s can be interpreted as the value of a pollution permit or allowance in a market environment
(Coggins and Swinton, 1996), one can always compare estimated MACs with observed carbon
prices in the market to assess the appropriateness of the production technology specification and
other parameters of an empirical estimation. This was impossible in the past but is feasible now
because of China’s recently piloted carbon trading markets. This study provides the first comparison
between observed and estimated carbon prices and reflects on the implications of the choice of
production technology specification and mapping schemes within the distance function framework
for shadow price estimation.

The paper is organized into five sections. The next section presents a review of the liter-
ature. The methods and data used in the study are described in the third section. The final two
sections discuss the results and provide conclusions.

LITERATURE

In spite of the size of China’s carbon emission contributions and the significance of com-
pliance cost that mitigation policies could impose, there is only a small number of studies inves-
tigating the MAC of carbon mitigation using a distance function approach. Table 1 summarizes
empirical estimates of China’s MAC for carbon obtained using various distance functions. As shown
in Table 1, all studies were conducted fairly recently. The results from these studies are not directly
comparable as the studies differ in the chosen distance function, the period covered and the level
of decision management unit (DMU). Nevertheless, the empirical estimates of the MAC of carbon
emissions in China based on the distance function approach vary widely from merely a few US
dollars into the hundreds and thousands of US dollars per metric tonne.
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Table 1: Empirical Estimates of China’s MAC for Carbon
(Distance Function Based Estimates)

Studies Approach Period DMU US$/Tonne"
Wang et al., 2011 DEA 2007 Province 77

Choi et al., 2012 DEA 2001-2010  Province 7

Lee & Zhang, 2012  Input Distance 2009 Industry 3

Yuan et al., 2012 DEA 2004; 2008  Industry 33 ~19561
Wei et al., 2012 DEA 1995-2007  Province 19

Wei et al., 2013 Directional Output™ 2004 Plant 335

Wei et al., 2013 Directional Output™ 2004 Plant 100

Du et al., 2014 Directional Output 2001-2010  Province 163 ~341
Zhang & Xie, 2015 DEA 1980-2012  Industry 0~78

TAll monetary values converted to constant 2010 US dollars; ""Wei et al. (2013) have
estimated a deterministic directional distance function using linear programming and
a stochastic directional distance function using maximum likelihood.

The non-parametric data envelopment analysis (DEA) approach is known to be less suited
for the estimation of shadow prices due to its non-differentiability. For distance functions using a
DEA approach, it is possible that some of the efficient observations are located on the inflection
points or vertices, which means that there is no unique slope at those points. The choice of the
slope inevitably affects the scale of the MAC estimated (Lee et al., 2002)

We thus focus on parametric distance functions which can be grouped into radial (She-
phard) output or input distance functions and the relatively new directional distance functions. All
output distance function values provide a measure of efficiency or productivity. In the presence of
undesirable outputs, however, this measure can become ambiguous and the Shephard output-based
measure ceases to be a meaningful measure of productive efficiency. This is because the output-
distance measure is defined in terms of proportional expansion in outputs. But a proportional ex-
pansion in outputs is beneficial only if the expansion in desirable outputs will more than offset the
damage caused by the accompanying expansion in undesirable outputs. While the directional output
distance function allowing for simultaneous expansion of desirable outputs and the contraction of
bad outputs provides a meaningful measure of productivity (Chambers et al., 1998), Vardanyan and
Noh (2006) show that the results can be sensitive to the chosen direction vector.

The directional distance function has been the preferred parametric method among studies
estimating China’s MAC (Table 1). The choice is often justified on the ground that the directional
output distance function is a more appropriate metric for measuring performance in the presence
of bad output under regulation (Fire et al., 1993; Fire et al., 2005). However, China’s environmental
regulation is mostly specified in terms of desirable inputs or outputs. In particular, before the pilot
markets for carbon trading were introduced, China’s regulations for mitigating carbon emissions
were mostly specified in terms of the reduction in energy intensity. Energy intensity targets can be
achieved by reducing energy consumption or increasing GDP growth with no binding power on
carbon reduction. It is thus unclear whether the justification from the policy perspective is valid or
not in the Chinese context.

Compared with output-based measures, input-based measure always provides a meaningful
summary of efficiency because a proportional savings in inputs, with or without undesirable outputs
present, is an unambiguous indicator of changes in social benefits (Hailu and Veeman, 2000). Lee
and Zhang (2012) is the only paper on China that uses an input distance function and produces the
lowest MAC for carbon in this literature as shown Table 1.

Radial and directional distance functions differ in the way the observed input/output vector
is projected onto the frontier. Radial measures (i.e. Shephard output distance function and input
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distance function) keep the output or input mix fixed at observed (individual specific) proportions
while non-radial measures (directional distance functions) apply the same direction vector to all
data points and don’t preserve the mix in the projection to the frontier. Drastic adjustments in the
output structure are more likely in the long run than in the short run. Similarly, the long-run
elasticities of inter-fuel and inter-factor substitutions are greater than the short-run ones. Thus one
could think of radial distance function based measures as better approximations to short-run sce-
narios involving small adjustments while non-radial measures can be more useful for representing
long-run situations where the input/output mix is transformed greatly. In this sense, it could be
argued that the MACs estimated using radial and non-radial measures could have different inter-
pretations.

In this study, we estimate China’s MAC using three parametric distance functions —namely
the input distance function (IDF), the output distance function (ODF), and the output directional
distance function (ODDF). To ensure comparability, we apply all three to the same dataset and
derive abatement cost estimates which are then compared with observed carbon prices in the pilot
markets. Below, we describe the methods and data used in the study.

METHODS

Like production, cost and profit functions, distance function provide a way of representing
the underlying production technology (Shephard, 1953, 1970; Fire, 1988; Fire and Primont, 1995;
Chambers et al., 1996). Distance functions are attractive because they: can be used to model multi-
output production processes; require only quantity data to estimate; do not require behavioural
assumptions of cost, revenue or profit maximisation; have function values that are measures of
(in)efficiency; and can be used to generate shadow prices or marginal abatement costs for undesir-
able outputs.

Given an underlying production technology Y (t) for period t, which is the set of technically
feasible input (x*) and output (u) vectors for producer i, or

Y(0) = {(u" ,x"): x* can produce u" in period t} (1)

Shephard’s (1953, 1970) radial input distance function is defined as the maximum amount by which
an input vector can be radially (proportionally) contracted while still being able to produce the
output vector:

it

IDF(u" X' 1) = maxH{ 0: (u%) eY(), 0e R } )

The IDF value is by definition the reciprocal of the input-based measure of technical efficiency. A
value of one for the input distance function indicates that the observed input-output vector is
technically efficient (on the isoquant) while a value greater than one indicates that it is inefficient.
That is, input-oriented technical efficiency (TE,) is equal to:

1

E=— A3)
IDF(u" X" f)

The function is a non-decreasing and continuous function of x for a non-negative vector of outputs
u; it is concave and homogeneous of degree one in x; and it is a quasi-concave function of u
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(Shephard, 1953, 1970). And it is non-increasing in desirable outputs and non-decreasing in un-
desirable outputs (Hailu and Veeman 2000). Finally, the input distance function provides a complete
representation of the production technology in the sense that IDF(u” ,x",1)>1 < (u" ,x™) € Y(1).
The radial output distance function is defined as the minimum amount by which an output
vector can be radially (proportionally) deflated and still be producible with a given input vector:

ODF(u" x',1) = minH{H: (%,x”) eY(), 0eR* ] )

The ODF value is the same as the output-based measure of technical efficiency. A value of one for
the input distance function indicates that the observed input-output vector is technically efficient
(on the production possibility frontier) while a value less than one indicates that it is inefficient.
The output distance function has the following properties: it is a non-increasing function of x; it is
convex and homogeneous of degree one in u; and it is a quasi-convex function of x (Shephard,
1970). The function is non-decreasing in desirable outputs but non-increasing in inputs and unde-
sirable outputs (Fire et al., 1993) and characterizes the technology fully, or ODF(u",x",1)<
1 & (u”,x") € Y(1). Output oriented technically efficiency (TE,) is given by the value of the function:

TE,= ODF(u" x",1) o)

For empirical applications, the translog functional form has been used for radial distance functions.
With the translog, the homogeneity property can be imposed globally as a restriction on the coef-
ficients (e.g. Hailu and Veeman, 2000). In this study, the radial distance functions are specified as:

M N N
N B, nu, +(0.5) >, > a,, nx,Inx, (6)

m=1 n=1 n"=1

N
InDF(ux,0) = a,+ 2, a,lInx, +
n=1

M M N M
+(0.5) Y, Y Bednu,dnu, +05) Y, Y y..Inx,Inu,

m=1 m'=1 n=1 m=1

N M
+a.1+(05).a,.2+ Y, a,.tInx,+ > B,.tInu,

n=1 m=1

where: output and input vector subscripts have been suppressed for simplicity; DF represents either
IDF or ODF; n indexes the vector of inputs 1,2,...,N; m indexes the desirable and undesirable
output vector 1,2,...,M; and ¢ denotes the time trend variable. The translog function in (4) can be
estimated using mathematical programming to minimise the sum of deviations from the frontier
(distance function value of 1) subject to the appropriate monotoncity and homogeneity restrictions.
To save space, we will not provide the details here as are available in Fire et al. (1993) for output
distance functions and in Hailu and Veeman (2000) for input distance functions.

The output directional distance function is defined in terms of translation along a chosen
direction and measures the maximum amount by which an input-output vector can be translated
and still remain technically feasible:

ODDF(u" ,x" t; g,,8.) = max,{0: (u" + g,.x" + g )e Y(1), 0e R} (7

Where: g, is the output translation vector and would include positive values for desirable outputs
and negative values for undesirable outputs; and g, is the input translation vector and is negative.
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Like the radial functions, the ODDF generalizes the input and output distance functions (Chambers
et al., 1996) and fully characterizes the technology, ODDF(u ,x" t; g,,8,) =0 (u”,x") € Y(1). The
ODDF takes a value of zero when the observed point is efficient. A positive ODDF value signals
that the point is inefficient and the directional measure of efficiency could be simply defined as the
negative of the ODDF value:

TE,= —ODDF(u" x",t,8,,8,) ®

ODDF satisfies the following translation property, which is useful in the estimation of the function
(as is the homogeneity property in the case of radial distance functions):

ODDF(u" + ag,.x"—ag..t;8,,8) = ODDF(u" x" t,8,.8,) )

Other key properties of the ODDF include: it is non-increasing in desirable outputs but non-de-
creasing in inputs and undesirable outputs; it is concave in (u,x); and is homogeneous of degree -
1 in the direction vectors, i.e.:

ODDF(u" x"t; 1.8,,2.8,) = 2~ ODDF(u" x" 1; 8,.8.) (10)

The ODDF is estimated using mathematical programming with the translation imposed on the
estimated parameters. The flexible functional that is linear in parameters and also allows for im-
posing the property globally is the generalized quadratic (Fare and Lundberg, 2005; Fére et al.,
2010; Hailu and Chambers, 2012). The generalized quadratic has the same structure as the translog
function except that the input and output variable values are in levels (not logs). Its parameters are
estimated using methods and constraints similar to those described in Hailu and Chambers (2012).
In our case, we suppress the input direction vector (g, =0) and estimate an output directional
distance function with g, vector that has positive elements for desirable and negative ones for bad
outputs.

Finally, shadow prices for bad outputs can be derived from the different distance functions
as implied marginal rates of transformation between a good output and a bad one transformed into
dollar values using the market price for the good output (e.g. Fére et al., 1993; Hailu and Veeman,
2000). In our case, the shadow price r; for a bad output u; expressed in terms of a good output u;,
derived from an input distance function would be given by:

dIDF(.)
u;

dIDF(.)
ou;

i

Y

=P

where p; is the market price for a good output while the good output is GDP as discussed below
and this price would be unity. Similar formulae are used in the case of the radial output and the
directional distance functions.

DATA AND VARIABLES

Existing studies on the MAC of carbon dioxide all include energy as a separate production
input variable. These studies typically calculate energy-related carbon emissions based on the IPCC
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Figure 1: Provincial Final Energy Consumption and Emissions (2001-2010, 30 Provinces)
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reference approach (IPCC, 2006). Wei et al. (2013) also calculated emissions from the production
of cement. Emissions calculated as such will inevitably exhibit high correlation with energy con-
sumption (top left, Fig. 1). Adding the carbon emissions from the production of cement will not
reduce the correlation by much as the proportion of emissions from cement production is usually
small compared with energy-related emissions (top right, Fig. 1). In fact, the correlation is so high
as to make the estimation of marginal effects via the radial measures extremely difficult and un-
reliable if not totally impossible.! Fig. 1 plots provincial CO, emissions in million tonnes (Mts),
CO, emissions (with emissions from cement production) in Mts, SO, emissions in 10,000 tonnes,
soot emissions in 10,000 tonnes against provincial final energy consumption in million tonnes of
standard coal equivalent (Mtce).

To make results comparable across all distance function, we include two inputs (labor and
capital), one good output (provincial Gross Domestic Product (GDP)), and three bad outputs —
carbon dioxide (CO,) emission, sulfur dioxide (SO,) emission, and total provincial soot emission.
We use Chinese provincial data for the 10-year period from 2001 to 2010. Table 2 presents the
definition and summary statistics of these variables. Below we explain how the data was collected
and constructed.

Inputs

Labor data was collected from China’s Statistical Yearbooks (CSYs) (NBSCa, 2002-2011).
Provincial capital data were collected from Wu (2009) including updates for more recent years.

1. Although not reported here, results from estimated distance functions with energy included as an additional input are
available from the authors upon request.
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Table 2: Summary Statistics for Data Used in the Analysis
(2001-2010, 30 Provinces)

Variables Definition” Unit Mean S.D. Min Max
Inputs
Labor Total employment 1076 persons 23 152 24 60
Capital Total capital stock 1076 $UST™ 436 358 41 2138
Outputs
GDP  Gross Domestic Product 1079 $US™ 135 120 7 694
CO, Energy related CO, 1076 metric tonnes 184 131 10 738
CO,¢ CO, with cement 1076 metric tonnes 204 147 12 813
SO, SO, emission 1074 metric tonnes 75 46 2 200
Soot  Soot emission 1074 metric tonnes 34 24 1 112

TAll variables defined as annual provincial statistics; "'all monetary variables converted
to constant 2010 prices and RMB is converted to US dollar at 1US$ = 6.6227RMB.

Outputs

Provincial GDP were collected from China’s Statistical Yearbooks (CSYs) (NBSCa, 2002—
2011). Emission data on SO, and soot are available from China’s Environmental Statistical Year-
books (NBSCb, 2002-2011). China’s statistical authority does not report emission or inventory data
on carbon dioxide. Most existing literature follow the IPCC reference approach to estimate carbon
emissions based on energy consumption. We followed the same practice to calculate energy-related
carbon emissions; however, we calculate CO2 emissions based on final energy consumption rather
than primary energy consumption as noted previously. We also calculated carbon emissions from
the process of cement production. Carbon emission factors for the burning of coal, oil and natural
gas and the production of cement are available from the IPCC (2006). Emission factors for heat
and electricity were calculated as share-weighted emission factors of individual energy carriers.
Energy shares of coal, oil and natural gas used in heat provision and electricity generation were
collected from China’s Energy Statistical Yearbooks (NBSCc, 2002-2011).2

The total energy consumption is the sum of the final consumption of five energy carriers:
coal, oil, natural gas, heat and electricity. China’s Energy Statistical Yearbooks (NBSCc, 2002—
2011) report three different provincial energy statistics: total consumption by energy carrier, total
primary energy supply and total final energy consumption. The first two are similarly defined as
the total energy resources that are available and consumed by a province in a given year, which
includes both resources used for energy transformation and raw materials, and resources actually
used by the economy as final energy consumption. As we argued in the introduction, it is the final
consumption, not the primary energy that defines the amount of energy that contributes to the
economic production. We have thus collected total final energy consumption by energy carrier. All
energy consumption data were converted to standard coal equivalent (SCE) — the standard energy
metric used in Chinese energy statistics. China’s Energy Statistical Yearbooks also provide con-
version factors for all energy carriers based on equivalent calorific values. However, we chose to
convert heat and electricity consumption to SCE based on coal equivalent in heat supply and
electricity supply (i.e. supply efficiency factors) rather than calorific values. This is because the
former is a better reflection of the energy transformation efficiency and the actual primary energy

2. As this is the common practice of constructing the emission data of carbon dioxide, we do not report the detailed
calculation process. Data is available from the authors upon request.
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Figure 2: Provincial MAC Curves (US$/Tonne)
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consumed in heat provision and electricity generation. We collected province-year-specific effi-
ciency factors for heat and electricity provision from various issues of Statistical Compilation of
China’s Electricity Industry (CEC, 2001-2010).

Carbon Prices

China has already launched seven regional pilot markets for carbon trading in a bid to
gain experience ahead of a nationwide scheme. The pilot markets include Beijing, Shanghai, Tianjin,
Guangzhou, Shenzhen, Hubei and Chongqing. Daily trading prices for these pilots are available
from http://k.tanjiaoyi.com/ .

RESULTS AND DISCUSSIONS
Input and Output Coverage

We estimated MACs using different distance functions and with different input and output
coverage levels. Fig. 2 presents the 10-year provincial mean MACs estimated using an input distance
function for the following four cases: 1) Single Bad which includes only energy-related CO2; 2)
Single Bad WC which also includes CO2 from cement production; 3) Multiple Bads which include
CO2, SO2 and soot); and 4) Multiple Bads WC where carbon emissions from cement production
are also included.?

3. There may be substantial provincial heterogeneity in the production technology across provinces. For example, eastern
provinces comprise higher proportions of service-oriented industries, whereas provinces in the central area have more heavy
industries. The heterogeneity implies that the inter-provincial substitutability is limited in the short run. However, this is
not an issue in the long run. This is also consistent with our argument that directional distance function which entails drastic
inter-factor substitutions is more akin to long-run scenarios. Our study does not intend to decompose or interpret the inter-
provincial technology heterogeneity for which the meta-frontier distance function may be a possible alternative (Zhang et
al, 2013).
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Figure 3: Cross-Consistency of Efficiency Estimates
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The provinces are sorted in increasing order by the last (i.e. Multiple Bads WC) MAC
values. A broader sectoral coverage reduces the marginal abatement cost estimates. The MAC for
carbon is consistently lower if carbon from cement production is included. This is true for both the
calculations with only carbon (solid and dashed curves) and those with multiple bads (dotted and
long-dashed curves).

As indicated in the introductory section, the MACs estimated with a single bad output and
multiple bad outputs can be interpreted as, respectively, unconditional and conditional marginal
abatement cost. From a policy perspective, unconditional MAC is less informative when policy
makers today are more interested in knowing the overall compliance cost of simultaneous mitigation
targets. For a country like China which is heavily dependent on coal consumption, a policy aiming
to mitigate carbon emissions often has the co-benefit of mitigating other pollutants such as sulfur
dioxide, soot and dust. Conditional MACs should therefore be lower than unconditional MACs in
this case. This is also confirmed by our results in Fig. 2. The MACs estimated with multiple bad
outputs are consistently lower than their counterparts with single bad outputs. Although not reported
here, these same observations hold for output distance function and output directional distance
function as well.

Cross-Consistency in Efficiency and MAC Estimates

Here we show results from three distance functions (IDF, ODF and ODDF) with all three
bad outputs and with carbon emissions from cement production included. Fig. 3 plots efficiency
estimates. There is generally good consistency across all three distance functions, although radial
measures (IDF and ODF) produce more consistent efficiency estimates. Note that larger bubble
indicates greater provincial GDP. The fact that we obtain very similar results applying different
distance functions to the same dataset adds to the confidence that the outcomes reflect genuine
efficiencies rather than artifacts of the choice of specific distance functions. However, this is not
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Figure 4: Cross-Consistency of MAC Estimates (US$/Tonne)
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the case for the MAC estimates. Fig. 4 shows the 10-year provincial mean MAC estimates using
different distance functions. The provinces are sorted by MAC values estimated from ODDF. We
make the following observations.

With our data, the two radial measures — IDF and ODF — produce identical MAC estimates;
however, this is not the case with other data sets.

There is a low correlation between MAC estimates from radial (IDF or ODF) and non-
radial distance functions (ODDF). In fact, the correlation between the two series of provincial mean
MAGC:s is only 0.37. Comparisons across studies typically focus on mean estimates (Table 1) but
the ranking and distribution are also important. The low correlation suggests that different distance
functions could possibly identify different provinces as low MAC sources of abatement, which is
especially problematic for drawing out policy implications.

There is also substantial heterogeneity in the variation and magnitude of MACs estimated
using different distance functions. The variation and magnitude of MACs estimated from ODDF
are significantly greater than those obtained from IDF or ODF. The grand mean MAC estimate
from ODDF is 340 US$ which is generally consistent with the estimates in Wei et al. (2013) and
Du et al. (2014). The mean MAC estimate from IDF or ODF is merely 20 US$, which is higher
than the estimate (3 US$) in Lee and Zhang (2012) but nowhere near the ODDF estimate. Although
Lee and Zhang also use an IDF, they use industrial data rather than provincial data.

Market Observations

Studies using ODDF often justify their choice on the ground that ODDF is a more appro-
priate metric for measuring performance in the presence of bad output under regulation. However,
for our chosen study period, China did not have any direct regulation imposed on carbon. The
literature also attempts to reconcile the substantial difference between MAC estimates using ODDF
and those using IDF or ODF from a methodological perspective. The ODDF derives much higher
MAC estimates because it places the DMUs on a steeper portion of the production frontier than
the IDF or the ODF. However, the economic interpretation is often unclear. Given the price levels
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Figure 5: Carbon Prices in China’s Pilot Markets (US$/Tonne)

(=3
(3]

15

o ; | __.___IJ\'_"""A -.-f l"?\'{m jl‘:
o] B SRR T ":;.L L r va:'i'h'r:g._x

1 it g
y S ‘_J:: t-,._; T J—'grr-‘-
2= L P‘"“—‘-———-v——)-*-p——-w—r—'_

(=1

T T T T T T
01JUL13 010CT13 01JAN14 01APR14 01JUL14 010CT14

Shenzhen ——-—-— Shanghai - — — Beijing -------- Tianjin
— — = Guangzhou — — Chongging Hubei

observed in the European and Australian carbon markets and the fact that China remains largely a
developing country, the mean MAC of 340$ per tonne estimated using ODDF seems too high.

It is important to note that radial measures (IDF and ODF) keep the output or input mix
constant while non-radial measures (e.g. ODDF) don’t. Drastic adjustments in the output structure
or inter-fuel and inter-factor substitution are more likely in the long run than in the short run. We
argue that radial measures are most likely approximating the short-run scenarios while non-radial
measures reflect long-run situations. China has only recently launched its seven pilot markets for
carbon trading (Shenzhen, Beijing, Shanghai, Tianjin, Guangzhou, Chongqing and Hubei). Despite
widely held concerns about liquidity and thus the price discovery function of China’s current carbon
market, carbon prices observed in these spot markets are more likely to reflect short-run MACs®.
Fig. 5 illustrates complete carbon price trends in the pilot markets. As can be seen from the figure,
observed carbon prices mostly lie within the range of 5 to 15 US$ per tonne. This is much closer
to the mean MAC of 20 US$ we obtain from our radial distance functions than the directional
distance function.

Because directional distance functions allow structural change in outputs and inputs, they
may provide long-run MAC estimates. However, the MAC estimates are very sensitive to the chosen
mapping scheme (Vardanyan and Noh, 2006). More importantly, the economic interpretations are

4. The reference to observed carbon prices is made for comparison purposes only. It is not necessary that the estimated
prices are similar or close to observed prices since the observed prices might not reflect the true opportunity costs of carbon
because of low participation. There is also substantial heterogeneity in term of participation and liquidity across the seven
pilot markets. However, a report recently released at the 2014 United Nations Climate Change Conference held in Lima
indicated that carbon prices in China have converged to a range between 20 to 70 Yuan per ton after a year of operation,
which is strongly indicative of future price fluctuation ranges for a national carbon market (Wang et al, 2014).

5. The fact that our estimate is slightly higher could be due to two reasons. First, our CO, calculation only considers
energy-related emissions and emissions from cement production. The CO2 emissions covered in China’s pilot trading
schemes are much broader. Most schemes cover traditionally energy-intensive and emission-intensive manufacturing in-
dustries and some also include building and construction and tertiary industries. A broader coverage would drive down the
marginal abatement cost.
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Figure 6: Distribution of Bootstrapped MAC Estimates (US$/Tonne)
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rather different with different mapping schemes. Researchers are strongly encouraged to interpret
their results in the context of the data and the particular methods employed to derive shadow prices.
Caution needs to be taken when generalizing results or comparing across studies.

Bootstrapped Results

The mathematical programming approach allows us to impose the theoretical restriction
in the estimation process and have them satisfied at all data points. But it does not provide confidence
intervals over estimates. To explore the sensitivity of the results, we bootstrapped the distance
function results for all the models. Fig. 6 presents the boxplots of results from 5,000 bootstraps for
three distance functions (IDF, ODF and ODDF) estimated with all three bad outputs included (CO,,
SO, and Soot). The bootstrapped means are very consistent with the grand means of our original
estimates and the mean values from IDF and ODF are still substantially lower than that from ODDF.
We have also presented detailed bootstrap results from ODDF for all 300 observations (Fig. 7).
Our original MAC estimates are very close to the mean values and fit well within the upper and
lower 95 quantiles of bootstrapped results even at the individual observation level.

CONCLUSIONS

A growing number of countries are considering economic instruments such as pollution
taxes or tradable permits to tackle environmental problems. One of the major challenges govern-
ments face is the lack of adequate knowledge about the cost to industry of pollution abatement
activities. Such cost estimates are either unavailable or highly uncertain. In the case of China, for
example, empirical estimates of the marginal abatement cost (MAC) of carbon mitigation obtained
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Figure 7: Distribution of Bootstrapped MAC Estimates by Observation (US$/Tonne)
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using distance function approaches vary widely. This variability in the magnitude and ranking of
MAC estimates may undermine the scientific support for policies aimed at curbing carbon emission.
In the literature, there has been very limited work that would shed light on this variability to help
governments make sense of the wide gaps between estimates and also between these estimates and
real-world prices for carbon. In this paper, we show that the variability can be partially explained
by the differences in the input/output coverage of estimated models and by whether the MAC
estimated is conditional (or unconditional) on simultaneous reduction of other related pollutants.
The paper also argues that the substantial heterogeneity in cost estimates can be explained in terms
of inherent differences in the nature (or economic interpretation) of the estimates from different
studies. In particular, we argue that radial measures imply little change in the input or output mix
and thus reflect short-run MACs while non-radial measures are evaluated at input/output mixes that
are a transformation of observed values and therefore are more akin to long-run MACs. Finally,
we provide short-run estimates that are very close to the carbon prices observed in China’s recently
launched pilot markets. The findings in our study suggest that a promising avenue for future research
would be a careful investigation of the economic interpretations of abatement cost estimates gen-
erated by different methods or mapping schemes (radial, directional, etc.). Such an exercise would
facilitate comparisons across different estimates and help policymakers get a better sense of the
cost to industry of pollution reduction measures.

Copyright © 2016 by the IAEE. All rights reserved.



126 / The Energy Journal

ACKNOWLEDGMENTS

Chunbo Ma thanks the University of Western Australia for funding through Research
Collaboration Award. The authors thank Yiming Wei, Hua Liao, Ke Wang, Yu Hao, Peng Zhou,
Donglan Zha and other seminar participants at Beijing Institute of Technology and Nanjing Uni-
versity of Aeronautics and Astronautics, and session attendants at IAEE Beijing conference for
very useful comments and suggestions. All remaining errors are our own.

REFERENCES:

Burtraw, D., A. Krupnick, K. Palmer, A. Paul, M. Toman, C. Boyd (2003). “Ancillary benefits of reduced air pollution in
the US from moderate greenhouse gas mitigation policies in the electricity sector,” Journal of Environmental Economics
and Management 45: 650—673. http://dx.doi.org/10.1016/S0095-0696(02)00022-0.

Chambers, R., Y. Chung and R. Fire (1996). “Benefit and Distance Functions,” Journal of Economic Theory 70: 407-419.
http://dx.doi.org/10.1006/jeth.1996.0096.

Chambers, R., Y. Chung and R. Fire (1998). “Profit, directional distance functions, and Nerlovian efficiency,” Journal of
Optimization Theory and Applications 98: 351-364. http://dx.doi.org/10.1023/A:1022637501082.

CEC, China Electricity Council (2001-2010). Statistical Compilation of China’s Electricity Industry.

Choi, Y., N. Zhang and P. Zhou (2012). “Efficiency and abatement costs of energy-related CO, emissions in China: a slacks-
based efficiency measure,” Applied Energy 98: 198-208. http://dx.doi.org/10.1016/j.apenergy.2012.03.024.

Coggins, J.S., and J.R. Swinton (1996). “The price of pollution: a dual approach to valuing SO, allowances,” Journal of
Environmental Economics and Management 30 (1): 58=72. http://dx.doi.org/10.1006/jeem.1996.0005.

Considine, T.J., and D.F. Larson (2006). “The environment as a factor of production,” Journal of Environmental Economics
and Management 52: 645-62. http://dx.doi.org/10.1016/j.jeem.2006.07.001.

Du, L.M., A. Hanley and C. Wei (2014). “Estimating the Marginal Abatement Costs of Carbon Dioxide Emissions in China:
A Parametric Analysis,” Kiel Working Paper No. 1883.

Fire, R., S. Grosskopf, C.A.K. Lovell and S. Yaisawarng, S. (1993). “Derivation of Shadow Prices for Undesirable Outputs:
A Distance Function Approach,” Review of Economics and Statistics 75: 374-380.

Fire, R., S. Grosskopf, D.W. Noh and W. Weber (2005). “Characteristics of a polluting technology: theory and practice,”
Journal of Econometrics 126: 469-492. http://dx.doi.org/10.1016/j.jeconom.2004.05.010.

Fire, R., and D. Primont (1995). Multi-Output Production and Duality: Theory and Applications, Kluwer Academic Pub-
lishers, Boston. http://dx.doi.org/10.1007/978-94-011-0651-1.

Fischer, C., and R.D. Morgenstern (2005). Carbon Abatement Costs: Why the Wide Range of Estimates? Resources for the
Future, Washington DC, p. 18.

Gamper-Rabindran, S. (2006). “Did the EPA’s voluntary industrial toxics program reduce emissions? A GIS analysis of
distributional impacts and by-media analysis of substitution,” Journal of Environmental Economics and Management 52:
391-410. http://dx.doi.org/10.1016/j.jeem.2005.12.001.

Greenstone, M. (2003). “Estimating regulation-induced substitution: the effect of the clean air act on water and ground
pollution,” American Economic Review 93: 442—448. http://dx.doi.org/10.1257/000282803321947498.

Hailu, A., and T.S. Veeman (2000). “Environmentally sensitive productivity analysis of the Canadian pulp and paper industry,
1959-1994: an input distance function approach,” Journal of Environmental Economics and Management 40(3): 251—
274. http://dx.doi.org/10.1006/jeem.2000.1124.

Hailu, A., and R.G. Chambers (2012). “A Luenberger soil quality indicator,” Journal of Productivity Analysis 38 (2): 145—
154. http://dx.doi.org/10.1007/s11123-011-0255-x.

IPCC, Intergovernmental Panel on Climate Change (2006). IPCC guidelines for national greenhouse gas inventories.

Kuik, O., L. Brander and R.S.J. Tol (2009). “Marginal abatement costs of greenhouse gas emissions: A meta-analysis,”
Energy Policy 37: 1395-1403. http://dx.doi.org/10.1016/j.enpol.2008.11.040.

Lasky, Mark. (2003). The Economic Costs of Reducing Emissions of Greenhouse Gases: A Survey of Economic Models.
Washington, DC: Congressional Budget Office.

Lee, J.D., J.B. Park and T.Y. Kim (2002). “Estimation of the shadow prices of pollutants with production/environment
inefficiency taken into account: a nonparametric directional distance function approach,” Journal of Environmental Man-
agement 64: 365-375. http://dx.doi.org/10.1006/jema.2001.0480.

Lee, M., Zhang, N. (2012). “Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy
in the Chinese manufacturing industries,” Energy Economics 34: 1492-1497. http://dx.doi.org/10.1016/
j-eneco.2012.06.023.

Copyright © 2016 by the IAEE. All rights reserved.



The Marginal Abatement Cost of Carbon Emissions in China / 127

NBSCa, National Bureau of Statistics of China (2002-2011). China Statistical Yearbooks, China Statistical Press.

NBSCb, National Bureau of Statistics of China (2002-2011). China Enviromental Statistical Yearbooks, China Statistical
Press.

NBSCec, National Bureau of Statistics of China (2002-2011). China Energy Statistical Yearbooks, China Statistical Press.

Newell, R.G., and R.N. Stavins (2003). “Cost heterogeneity and the potential savings from market-based policies,” Journal
of Regulatory Economics 23(1): 43-59. http://dx.doi.org/10.1023/A:1021879330491.

Repetto, R., and D. Austin (1997). The Costs of Climate Protection: A Guide for the Perplexed, World Resources Institute,
Washington D.C.

Shephard, R. W. (1953). Cost and Production Functions, Princeton Univ. Press, Princeton, New Jersey.

Shephard, R. W. (1970).Theory of Cost and Production Functions, Princeton Univ. Press, Princeton, New Jersey.

Vardanyan M., and D.W. Noh (2006). “Approximating pollution abatement costs via alternative specifications of a multi-
output production technology: A case of the US electric utility industry,” Journal of Environmental Management 80:
177-190. http://dx.doi.org/10.1016/j.jenvman.2005.09.005.

Wang, Y. (2014). China Carbon Finance Development Report, United Nations Climate Change Conference, Lima.

Wang, Q.W., Q.J. Cui, D.Q. Zhou and S.S. Wang (2011). “Marginal abatement costs of carbon dioxide in China: a non-
parametric analysis,” Energy Procedia 5: 2316-2320. http://dx.doi.org/10.1016/j.egypro.2011.03.398.

Wei, C., L. Andreas and B. Liu (2013). “An empirical analysis of the CO2 shadow price in Chinese thermal power
enterprises,” Energy Economics 40: 22-31. http://dx.doi.org/10.1016/j.eneco.2013.05.018.

Wei, C., J. Ni and L. Du (2012). “Regional allocation of carbon dioxide abatement in China,” China Economic Review 23:
552-565. http://dx.doi.org/10.1016/j.chieco.2011.06.002.

Weyant, J. P., and J.N. Hill (1999). “Introduction and Overview,” The Energy Journal Special Issue: vii—xiv. http://dx.doi.org/
10.1007/978-1-4615-4953-6_1.

Wu, Y. R. (2009). “China’s capital stock series by region and sector,” UWA Discussion Paper 09.02, Business School,
University of Western Australia.

Yuan, P, W.B. Liang and S. Cheng (2012). “The margin abatement costs of CO, in Chinese industrial sectors,” Energy
Procedia 14: 1792-1797. http://dx.doi.org/10.1016/j.egypro.2011.12.1169.

Zhang, N., P. Zhou and Y. Choi (2013). “Energy Efficiency, CO, emission performance and technology gaps in fossil fuel
electricity generation in Korea: A meta-frontier non-radial directional distance function analysis,” Energy Policy 56: 653—
662. http://dx.doi.org/10.1016/j.enpol.2013.01.033.

Zhang, N. and H.L. Xie (2015). “Toward green IT: Modeling sustainable production characteristics for Chinese electronic
information industry, 1980-2012,” Technological Forecasting & Social Change 1015: 62—70. http://dx.doi.org/10.1016/
j-techfore.2014.10.011.

Copyright © 2016 by the IAEE. All rights reserved.






