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ABSTRACT

Forecasting quantile and value-at-risk levels for commodity prices is methodo-
logically challenging because of the distinctive stochastic properties of the price
density functions, volatility clustering and the importance of exogenous factors.
Despite this, accurate risk measures have considerable value in trading and risk
management with the topic being actively researched for better techniques. We
approach the problem by using a multifactor, dynamic, quantile regression for-
mulation, extended to include GARCH properties, and applied to both in-sample
estimation and out-of-sample forecasting of traded electricity prices. This captures
the specification effects of mean reversion, spikes, time varying volatility and
demonstrates how the prices of gas, coal and carbon, forecasts of demand and
reserve margin in addition to price volatility influence the electricity price quan-
tiles. We show how the price coefficients for these factors vary substantially across
the quantiles and offer a new, useful synthesis of GARCH effects within quantile
regression. We also show that a linear quantile regression model outperforms
skewed GARCH-t and CAViaR models, as specified on the shocks to conditional
expectations, regarding the accuracy of out-of-sample forecasts of value-at-risk.
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1. INTRODUCTION

For managers involved in risk and operations, as well as for regulators concerned with
market surveillance, modelling and forecasting the tails of price distributions in traded markets may
often be a more crucial activity than formulating central expectations. As a task, it is certainly the
more methodologically challenging. Both the relative sparseness of the data in the tails and the
extreme sensitivity of the results to misspecification in the functional form of the distribution create
severe difficulties. Thus, robust parametric methods for specifying predictive distributions (eg Guer-
mat et al, (2001), (2002)), as well as semiparametric formulations for estimating specific quantiles
(eg Engle et al (2004), Gerlach et al., (2011)), have characterised recent research. Ad hoc repre-
sentations of skewed and fat-tailed properties have become particularly necessary in practice (Kues-
ter et al. (2006)). In the context of forecasting volatility, or Value-at-Risk (VaR) calculations (eg
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Hong et al, 2009; Glasserman et al, 2000) the increasing range of pragmatic approaches to this
problem has inevitably led to hybrid and combining proposals in attempts to improve out-of-sample
predictive performances (Taylor et al, 1998, 1999; Jeon et al, 2013). Evidently there is a need in
practice to develop more accurate forecasts of tail risk rather than relying upon what the stylised
theoretical models of the price formation processes generally provide.

Quantile regression, following Koenker et al (1978), has promised several attractive fea-
tures in this respect. Firstly, it offers a semiparametric formulation of the predictive distribution,
the quantiles of which can be efficiently estimated with distinct regressions. It is possible therefore
to have a fine resolution of the tail characteristics in terms of empirical estimates for the required
quantiles. Fundamental factors can be specified in the quantile regressions, which may exhibit
different coefficients according to the quantile levels. This feature offers greater predictive insights
and accuracy. Secondly, the conditional nature of the regressions is valuable for the explicit rep-
resentations of varying dependencies in scenario tree creation (as may be required, for example, in
stochastic optimisation models for risk management, eg Alexander et al, 2004). Thirdly, the non-
parametric way in which a tail distribution can be developed from separate quantile models offers
an alternative perspective to multi-process modelling in the contexts where modellers may be
tempted to use mixtures or regime-switching to capture different price formation process for normal
and extreme events. Instead of an unobserved latent variable, such as in Markov regime switching
(eg, Karakatsani et al., (2008)) and a restriction in the number of regimes, such as in smooth
transition logistic regressions (eg Chen et al (2010)), quantile methods inherently associate a sepa-
rate regime with each quantile.

One of the most critical areas for the use of well estimated tail probabilities is in VaR
calculations, which are specified as quantiles, and have therefore motivated substantial research in
finding effective quantile forecasting methods (eg Taylor (2008); Fiiss, (2010)). The methodological
benchmark in theory appears to be the conditional autoregressive value at risk (CAViaR) approach
inspired by applying GARCH ideas to quantiles, whereby the quantiles are modelled conditionally
as autoregressive processes (see Engle et al (2004), Taylor (2005)). These have proven to be very
successful in predicting VaR in research studies, but (unlike GARCH models) may be difficult to
apply in practice and appear to have acquired only limited implementation in financial risk man-
agement. Furthermore, in situations where potential exogenous factors are expected to be signifi-
cantly distinct in their effects across the quantiles, the CAViaR methodology, unlike quantile re-
gression, has lacked this extra specification, and exogenous factors have only been formulated to
estimate the conditional mean.

In this respect, spot prices in wholesale electricity markets present one of the most de-
manding application areas for comparative methodological research on this theme, and offer a rich
set of known exogenous factors that may have different effects across the quantiles. Power prices
are characterised by high volatility, positive skewness, substantial volatility clustering and large
spikes. Furthermore, evidence for the substantial impact of exogenous fundamental drivers, and
their nonlinear response functions with respect to demand, excess capacity and fuel prices, is well
established (Chen et al (2010)). Forecasting tail probabilities and VaR, however, despite its wide-
spread appeal and use in energy trading, remains under-researched and retains many open questions.
Whilst the nonlinear properties of exogenous variables have motivated interest in regime switching
models, their out-of sample performances have not matched their intuitive and highly significant
in-sample fitting (eg Kosater et al (2006), Misorek et al., (2006)). Evidence on the value of regime-
switching models for forecasting is mixed and seems to suggest that the evolutionary nature of
power price formation requires more robust methods. It is an open question, therefore, whether
quantile methods can be developed to provide this capability.
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Prediction of VaR out-of-sample for energy commodities can be found in Aloui (2008),
Chan et al (2006), Fiiss et al. (2010), Giot et al (2003), and Hung et al. (2008). The majority of
these studies use various GARCH models with different specifications of the innovation processes,
the main conclusions being that GARCH models need to have fat tailed and possibly skewed
distributions to work well. Quantile regression approaches are beginning to be applied in this context
(Nowotarski et al, 2014, and Jonsson et al, 2014). Furthermore, it appears to follow both from the
evident GARCH properties in power prices suggesting a persistence of shocks, and the in-sample
regime-switching models between electricity fundamentals suggesting the need to accommodate
varying effects of exogenous factors, that there is a prima facie case for examining the joint spec-
ification of both fundamental factors and volatility as explanatory factors. As Xiao et al (2009)
observe, this presents a complicated nonlinear quantile formulation which is elusive to conventional
estimation. One approach taken by Chen et al (2012) uses a smooth transition regime switching
GARCH model, with innovations modelled as skewed Laplace distributions to facilitate the quantile
estimations. Using Bayesian estimation, this succeeds in estimating quantile regression under con-
ditions of heteroscadicity and regime switching, but applications with more than one exogenous
factor remain challenging to estimate. We adopt an alternative two stage approach of first estimating
the GARCH process with a factor model for the price levels, and then augmenting a multifactor
model for quantiles with this GARCH process (Xiao et al, 2009, demonstrated the convergence of
this process in the univariate case). The benefit of this two stage approach that it preserves a more
transparent representation of volatility in its conventional manner, but still isolates how, alongside
other factors, its impact varies by quantile.

This approach is tested against a range of best-practice alternatives under the most stringent
condition of the evening peak (6:30-7:00pm), which is the most volatile, skewed and spiky trading
period in the British power market. The British market is a transparent one with useful exogenous
day-ahead information available to market participants, and, being well-established, there is a long
time series provide an extensive out-of-sample analysis of day ahead forecasts. With this method-
ological proposal, it is important to benchmark this quantile regression approach against the most
appropriate GARCH models, typical in practice, and also the potential use of CAViaR models in
this context. We provide convincing results that the quantile factor model with volatility provides
better validated and more accurate forecasts than conventional alternatives.

In the next section we provide a short review of the price formation properties in wholesale
electricity, motivate the use of the exogenous variables and indicate why they may be nonlinear.
Then, we describe the data, followed by the methods. In-sample and out-of-sample results are then
reported and a concluding section summarises the key research contributions.

2. ELECTRICITY PRICE FORMATION FUNDAMENTALS

Electricity is a flow, rather than a stock commodity: it is produced and consumed contin-
uously and instantaneously. Traded physical products are therefore defined and sold in the form of
metered contracts for the constant delivery of a specified amount of power over a specified period
of time, eg one megawatt for one hour (MWh). Most “spot” markets deal in such hourly products,
although some, eg Britain and Australia, have finer granularity at half-hourly intervals. These hourly
(or half-hourly) spot prices emerge either from an auction process whereby generators and retailers
make offers and bids (which may be held once on the previous day to set all hourly prices for the
subsequent day) or continuous trading on an exchange platform from a day ahead until a particular
time before actual delivery (eg an hour in Britain). Spot price formation itself, because consumers
are price inelastic in the short term and cannot store electricity once generated, is mainly a function
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of the demand, technology and competition amongst generators. For a particular level of demand
at a particular time, there will be a stack of generating technologies available, and the market-
clearing price, is usually taken as the offer price of the most expensive plant needed over that
trading period. Thus, if the market were competitive, and generators offered at short-run marginal
costs, market price volatility would be envisaged as the projection of demand volatility on to the
supply function offered by the generators (Stoft, 2002). Given the various plant technologies avail-
able for dispatch, differentiated in terms of costs and operational constraints, this short-run supply
cost function is intrinsically steeply increasing, discontinuous and convex. Hence there is an induced
skewness from demand volatility into price volatility.

In the presence of these characteristics, and since relatively few customers are able to
respond to real-time price signals, spot prices are sensitive to the stochastic variables, such as
demand shocks and plant outages. Thus, expectations of spot prices involve at least considerations
of the underlying fuel (for short term marginal costs) and the reserve margin (for scarcity pricing
above marginal cost). Moreover, as almost all electricity markets are oligopolies, at times of scarcity,
when the reserve margin (available supply minus demand) is low, those generators with market
power may offer and create market prices substantially above marginal costs (e.g. Wolfram (1999);
Wolak et al (1997)). This creates a further behavioural and possibly nonlinear element to extreme
price formation. The nonlinear implications of this price formation process for the exogenous factors
in a quantile regression model suggest the following functional form propositions:

1. Demand effect is positive and increases nonlinearly with higher quantiles. To the
extent that the supply function is convex in available capacity, we would expect to
see a positive price coefficient to demand with higher effects at higher prices. Thus,
one should find the coefficients increase nonlinearly with higher quantiles.

2. Reserve margin effect is negative and decreases nonlinearly with higher quantiles.
Scarcity induces a propensity for generators to offer at higher prices. Oligopolies
characterize power markets and their market power increases with a declining reserve
margin. Extreme scarcity can create a residual monopolist. Furthermore, reserve mar-
gin shocks may be due to unusual outages in generating capabilities and, once it is
known to the market that a generator is short, this may induce a selling squeeze by
the other generators and hence higher prices.

3. Fuel (including carbon allowance prices) coefficients will be positive but may have
nonlinear, non monotonic functional relation across quantiles. Even though power
prices in a predominantly thermal system will consist, at the market clearing price, of
fuel prices including carbon costs (where levied, eg Bunn et al, 2007), plus the gen-
erator’s profit margin, to the extent that changes in the fuel and carbon prices may
cause a change in the merit order, a nonlinear response to fuel and carbon price changes
could be expected, but this could also be non monotonic. For example if gas prices
go down, gas generation will become baseload, increasing its low quantile coefficients,
with gas no longer affecting the high quantile peakload prices. But if gas prices are
higher than coal, and if scarcity in the carbon allowance market means that carbon
prices are determined by fuel-switching from coal to gas, this may neutralize the
impact of gas-coal price discrepancies. On the other hand, low carbon prices, that do
not cause fuel switching, will have a decreasingly positive effect as price rise, if coal
is cheaper than gas, and an increasingly positive effect if gas is cheaper than coal
(since the carbon intensity of coal is higher). It is clear therefore that fuel prices will
have an idiosyncratic pattern of influence on power prices that will not be linear, and
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indeed is likely to change over time according to movements in the coal, gas and
carbon markets.

4. Adaptive behavior (manifest as a lagged price) effect will be positive and nonlin-
ear across quantiles. Adaptive behavior will be manifest in terms of reinforcing
previously successful offers. High prices will tend to be followed with high prices.
Furthermore, if there is an element of repeated gaming in power markets, as often
suggested (Rothkopf, 1999), signaling between market agents will encourage this and
motivate a positive coefficient for lagged prices. This will become stronger at higher
quantiles, as the market becomes less competitive and gaming more possible and
plausible.

3. DATA

The British electricity market, liberalised in the early 1990s, is perhaps one of the most
mature wholesale power markets in the world. In March 2001 the New Electricity Trading Arrange-
ment (NETA) were implemented and introduced bilateral and voluntary forward trading in England
and Wales to replace the compulsory, day-ahead uniform auction Pool that had existed since 1990.
In April 2005 the British Electricity Trading and Transmission Arrangement (BETTA) extended
this to include Scotland, whilst the EU carbon emissions market started at the beginning of that
year. More specifically, the design of the reformed British market is based upon fully liberalised
trading and plant self-scheduling, and hence, in this voluntary bilateral environment, most energy
is traded with forward contracts. Close to physical delivery, agents fine tune their positions, from
blocks (peak and baseload) to half-hourly resolutions, in the Power Exchanges that have emerged.
These operate continuously up to 1 hour prior to each half-hourly physical delivery period, a point
defined as Gate Closure, and are effectively the spot markets. After Gate Closure, the System
Operator administers a market for system balancing, and invites offers and bids for load increases
or decreases in real time.

In the British market, the main reference for spot trading has been the UKPX (now APX)
power exchange. The spot prices are volume-weighted averages of all trades ahead of each trading
period. Each day consist of 48 trading and load periods. The UKPX started its operation in March
2001. Compared to OTC contracting, UKPX is an anonymous exchange market place for trading
and clearing. There are no locational prices in the British market and congestion, although dealt
with in the real time system balanced by the system operator, does not contaminate the UKPX
energy prices.

Our data spans 8" June 2005 to 4" September 2010. We selected period 38, corresponding
to 18:30 to 19:00 in the winter (and an hour earlier in the summer), as the most challenging time
series of prices for comparative analysis. It is the evening peak when household activities and the
onset of darkness create the highest prices and, if supply shortages happen, so do spikes. The
standard deviation of prices in this sample varies from around 11 during the night time hours,
around 20 during the day to over 30 within the periods 33 to 39. Demand and demand uncertainty
are also greatest during P38, with average demand in P38 in the sample being 44.9GW, and a
standard deviation of 7.2GW, compared to averages across all periods of 38.7GW and 5.5GW
respectively. With the onset of darkness (sunset) fluctuating at the load centre of GB between
15:53pm in winter and 21:22pm in summer, P38 is the median period. P38 has also been used in
other published studies on British data (Chen et al, 2010; Bordignon et al, 2013) as being typical
of the evening peak period in Britain, and therefore its choice here aids comparisons. Figure 1
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shows the development of the UKPX period 38 prices together with the day ahead spot prices of
gas, coal, and carbon, as well as the day ahead demand and reserve margin forecasts as conveyed
to the market by the system operator.

The dependent variable used in the analysis is:

UKPX Period 38 Price. UKPX is the day-ahead and on-the-day power exchange,
allowing high frequency (half hourly) trading, up to an hour before real time. Period
38 (18:30 to 19:00 in winter; an hour earlier in summer) represents peak demand.
Prices are quoted in £/MWh and represent the volume weighted prices for this period
as cleared on the exchange in the preceding 24 hours.

The factors used in the analysis are all known to the market before the power exchange closes for
the trading period concerned, and can therefore be considered exogenous market information for
the power price formation:

Lagged UKPX Period 38 prices. These are the UKPX Period 38 prices lagged by one
day.

NBP Gas Price. We use daily UK natural gas one-day forward price, from the main
National Balancing Point (NBP) hub. The price is quoted in £/BTU (British Thermal
Unit).

Coal price. We use the daily steam coal Europe-ARA (Amsterdam, Rotterdam, and
Antwerp) index, taking into account the $/£ rate.

Carbon emission price. We use the EEX-EU daily carbon emission allowance one year
forward price taking into account the €/£ rate.

Demand forecast. This forecast is made available by the System Operator for each half-
hourly trading period. In our study we use the period 38 demand forecast for the next
day. Since it is released to the market at 18:17, one operational day ahead of closing
prices, it reflects information available to participants and avoids the endogeneity
issue of using actual demand.

Reserve margin forecast (indicated margin). The System Operator also makes
forecasts of the available reserve margin for each half-hourly trading period. This is
defined as the difference between the sum of the maximum available output
capacities, as initially nominated by each generator prior to each trading period, and
the demand forecast described above. In our study we use the period 38 reserve
margin forecast, released at 18:16 for the next day.

Figure 1 (upper left exhibit) displays the period 38 price profile reflecting the “super peak” period
with distinct demand, costs and operating constraints. The figure reveals typical spot electricity
price features of spikes, mean reversion, seasonality, high (and time varying volatility). In Table 1
we present descriptive statistics that confirm these characteristics with a high price standard devi-
ation, substantial skewness and kurtosis, rejection of normality according to the Jarque-Bera test,
rejection of unit roots according to the ADF test and clear signs of positive serial correlation at
different lags according to p and Q tests. We also show the empirical quantiles at 1%, 5%, 10%,
90%, 95%, and 99% levels which reveal high price risk in particular for consumers or traders
having a short position in the period 38.

4. PRICE DISTRIBUTION MODELLING AND FORECASTING

In this Section we briefly describe the theoretical framework.

Copyright © 2016 by the IAEE. All rights reserved.



108 / The Energy Journal

Table 1: UKPX Period 38 Prices

Statistics Mean Med Min Max Std  Skew Kurt JB ADF o2 P QA0)
P, 5879  46.93 13.22 42172 37.54 292 1892 23040 -6.93 071 0.52 3268
In P, 3.93 3.85 2.85 6.04 052 049 3.19 79 —-4.55 084 0.72 5586

Quantiles 1% 5% 10% 90 % 95 % 99 %

P, 18.18 24.12 28.89 98.38 130.07  194.06

In P, 290 3.18 336 459 4.87 5.27

The table shows the mean, median, min, max, standard deviation, skewness, excess kurtosis, Jarque-Bera, Augmented
Dickey Fuller with constant and control lags according to the SIC criteria, autocorrelation at lag 1 and 10 and Ljung-Box
statistics with 10 lags. We also show the empirical 1%,5%,10%,90%,95%, and 99% quantiles. Critical values at 1% level
for JB is 9.21, for ADF-test -3.43, and for LB(10) 23.21.

4.1 Quantile Regression Models

Quantile regression methods develop explicit models for specific quantiles of the distri-
bution of a dependent variable, using exogenous variables with different coefficients at each quan-
tile. Quantile regression was introduced by Koenker et al (1978) and is fully described in Koenker
(2005) and Hao et al (2007). Applications in financial risk management can be found in Alexander
(2008).

Let ge [0,1] be the quantile, e.g. 1%, 5%, ..., 99%. Let Y, be the dependent variable (e.g.
log of el. price) and X, a d-dimensional vector of explanatory variables (e.g. log of the gas price,
log of demand etc.), including a constant. The conditional quantile function is given by

0,Y,|X)=XB, 4.1

in which, as implemented in several software packages (eg Eviews, R, Stata), the parameter B, is
derived according to the following optimization:

T
arg min 2 (g—1 Y,SX,Bq)( Y—-XB,
t=1

q

where “4.2)

. _[1if r=XB,
Yi=XBaT |0 otherwise

Details on estimating standard errors for coefficients, inference and goodness of fit can be found in
Koenker et al (1999). To specify a model that incorporates the time series aspects, let X be a subset
of information variables that become available at time ¢ and X, , be variables {X }iZh, so that

X,=(X,X, ). Chernozhukov et al (2001) formulate the following general quantile regression
model

0,Y)=XB,+7,AX.9
1Xoq) = 0,1(X,_1.q) + HX,.0,).

Copyright © 2016 by the IAEE. All rights reserved.
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Here f,(-) and f,(-) represents functions of the information set. Models of this form are useful as
parsimonious regressions that represent VaR/quantiles (Chernozhukov et al (2001)). One example
involves the model

fl(irﬂ) = O-(Yt_luil )?t)’

where 0®(Y,—u,| X)) is the conditional variance of the de-meaned Y,. It can take the form of an
ARCH model, see Koenker et al (1996). As suggested by Chernozhukov et al (2001), a simpler
strategy is to first estimate 6>(Y,—u,| X,) via a GARCH model and use it as a regressor in the linear
model. A similar approach is also done in Xiao et al (2009). They first use quantile regression to
estimate the volatility, and then include lagged volatility and the lagged dependent variable as
explanatory variables in the linear quantile regression model. They establish the convergent effi-
ciency of this approach.

The CAViaR class of models also falls into this framework. Let ¢, be the de-meaned
process, ¢,=Y,—u,. Engle et al (2004) suggest four different CAViaR specifications, all of which
are first-order autoregressive. The Indirect GARCH(1,1) CAViaR model,

0,(e)=(1-2I(g<0.5))(a; + 0,0 (&, )* + aze7 |)*°. 4.4)
The Symmetric Absolute Value CAViaR model,

0 e)=a,+,0,¢ )+ as|le,_|. 4.5)
The Asymmetric Slope CAViaR model,

0 e)=a,+ a0, ¢ )+ asle, [ 1(g=0.5)+ a,|e,_, | [(g<0.5). (4.6)
The Adaptive CAViaR model,

0,(e)=0Q,e,_1) + ai[q—[1 +exp(K(e,_,— Q,(e, )N '] 4.7)

Here Q,(¢,) is the g-percentile of the de-meaned price distribution at time 7, [ is a indicator function
and K is a smoothing parameter which may be chosen or estimated. Quantile regression models are
robust to distributional misspecifications, as no explicit distributional assumptions need to be made.
In fact, CAViaR models can be used for situations with constant volatilities but changing error
distributions, or situations in which both error densities and volatilities are changing (Engle et al
(2004).

4.2 Fully Parametric Location-scale Models

Fully parametric models are among the most commonly used market risk measures, and
are typically based on the assumption that the price distribution can be described by a parametric
density function together with a model for the conditional variance. Popular specifications of the
conditional density are Gaussian or skew Student-t, and a GARCH model for the conditional var-
iance. As a methodological benchmark for the quantile regression models, we use location-scale
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models where the volatility dynamics follows a GARCH(1,1) structure. That is, we assume that the
distribution of the dependent variable can be expressed in the form

Y=u+e=u,+0z2
t t iidt t "=t (48)
Zz~fz(')

Here 4, is the mean of ¥,, 0,= \/ a,+ a,07_; + a,&>_ |, with f, is a zero-location, unit-scale proba-
bility density that can have additional shape parameters. The one-step forecast of the g-percentile
of Y, based on information up to time ¢ is given by

Qq(Yt+l)=/’2t+1 + 6t+]Qq(Z) (48)

where Q,(z) is the g-percentile implied by f,. Approaches differ with respect to the specification
of the conditional mean, x,, and conditional density f,. Note that the Indirect GARCH(1,1) CAViaR
model (4.4) corresponds to a model on the form given by (4.8), but with zero location parameter,
1,=0, and an iid error distribution.

4.3 Forecasting

To validate the predictive performance of the models, we consider the unconditional test
of Kupiec (1995), the conditional coverage test of Christoffersen (1998) and two backtests based
on regression. The Kupiec (1995) test is a likelihood ratio test designed to reveal whether the model
provides the correct unconditional coverage. More precisely, let { H,}7_, be an indicator sequence
where H, takes the value 1 if the observed price, Y,, is below the predicted quantile, O, ,at time ¢

1 if Y, <Q,
H,_{O ity =0 (4.9)

Under the null hypothesis of correct unconditional coverage the test statistic is

LR, =~2 10g{(1 - n”p)no”gip] g
(1 =7, Ghs

where n; and ny is the number of violations and non-violations respectively, 7., is the expected
proportion of exceedances and 7, = n,/(n, + n,) is the observed proportion of exceedances. In the
Kupiec (1995) test only the total number of ones in the indicator sequence { H,}7_, counts, and the
test does not take into account whether several quantile exceedances occur in rapid succession, or
whether they tend to be isolated. Christoffersen (1998) provides a joint test for correct coverage
and for detecting whether a quantile violating today has influence on the probability of a violating
tomorrow. The test statistic is defined as follows:

e 1 - "o asy
LR, = _210g[ Tty = M) ] 23

1=z omgpo (1= omyy |
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where n,; represents the number of times an observations with value 7 is followed by an observation
with value j. 7y, = ng,/(ny, + ny,) and m,, = n,y,/(n;, + n,y). The LR, test is only sensitive to one
violation immediately followed by another, ignoring all other patterns of clustering.

The Kupiec (1995) and Christoffersen (1998) tests only use information on past quantile
violations, and therefore might not have sufficient power to detect misspecified risk models. To
increase the power we may also want to consider whether violations can be predicted by including
other data in the information set such as previous outcomes or the quantile estimate for the period
itself. The advantage of increasing the information set is not only to increase power, but also to
help us understand the areas in which the risk model is misspecified (Christoffersen (2010)). We
consider the following two regression based backtests, similar to Engle et al (2004);

H,=By+ BH,_+BH, ,+BH, 5+ B,H, ,+¢, (4.10)
H,=By+ BH,_+ BH, >+ BsH, 5+ B,H, ,+ BsQ, +e,. (4.11)

Here the indicator variable H, is defined in Equation (4.9), and Q, denotes the quantile estimate
itself. The four lags were the longest periods of significance in the data. In Equation (4.10) we test
the hypotheses H:f, = 5, = B;= B, =0 against the alternative that at least one of B,,5,,B;,B, is
significant different from zero using a standard F test. This provides insights into clustering. In
Equation (4.11) we test H,: 35 =0 whether quantile exceedances, under circumstances where there
may be clustering, are also linked to the scale of the quantile forecasts using a simple 7 test.

5. EMPIRICAL ANALYSIS

First we conduct an empirical analysis of the price sensitivities with respect to the factors
described in Section 3. Then we evaluate the ability of different methods to forecast the tails of the
price distribution.

5.1 In Sample Modelling Using Quantile Regression

We perform in-sample analysis using all data from 9" June 2005 to 4™ September 2010
which consist of 1915 observations for the period 38 UK electricity prices. The coefficients of
lagged prices, lagged gas/coal/carbon prices, forecast of demand and reserve margin are investigated
at the quantiles 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99%. In order to variance-stabilise
the data and interpret all parameters as elasticities, we log-transform both the dependent and in-
dependent variables, as in equation (5.1).

0,(InP38)) = B§ + B{InP38, | + B4InGas, , + B{InCoal, , + B{InCarbon, , +

BiInDemand, + f¢InReserve, + B4 o(InP38,—u,) G-
Here o®>(InP38,—1,) is the conditional variance of the de-meaned log prices, and is estimated using
Model 4 described in Section 5.2.1 below. The index g refers to the specific quantile. All calculations
are performed in EViews (The QREG procedure). We recognise that this is a reduced form repre-
sentation, but structural estimation from a quantile formulation is beyond the scope of this research
and our approach is comparable to many single period models used elsewhere in research on
electricity price formation.
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Table 2: Quantile Regression Results

Quantile lag P38 Gas Coal Carbon Demand Reserve Margin  Volatility = R2-adjusted
1% (.22 (. 3]k 3]k (), Q7K 0.08 — .37k —0.22%% 49.0
5% 0.28%#k (.27 (0,334 (),06%H* 0.23 %% —0.28%* —0.11%%* 53.6
10 % 0.3k .27k 3]k (), Q5K 0.24 %% — .27k -0.02 55.2
25 % 038k (0.23%kk (. 30%H%(,04%5* 0.30%* — .27k -0.02 57.5
50 % 0.47%5k (0, ]9k (2708 (), 030k 0.25%% — (.35 0.06%* 58.9
75 % 0.55%# k(.20 (,22%%%  (),02%%* 0.26%%* —0.46%** 0.02 58.2
90 % 0.59%#k — 0.20%%k  (0.16%** (.01 0.29% — .54k 0.04 58.9
95 % 0.50%# %k (.20%#%  (,22%%%  (,02%%* 0.34%* —0.63%** 0.2] %% 59.8
99 % 0.35°%: 0.26* 0.30 0.02 0.42 —0.86%** 0.16 58.3

*, *% and *** indicate significance at the 10%, 5% or 1% level, respectively.

In table 2 we show the parameter values at different quantiles for model (5.1). The ex-
planatory power measured by Koenker et al (1999) pseudo R-squared is in the range of 49% to
59%.

Lagged prices. The significance and sign of the lagged electricity price is consistent with
mean-reversion (positive serial correlation for prices and negative serial correlation for returns).
Except for the 95% and 99% quantiles we find increasing serial correlation for higher prices.

Gas prices. The gas price coefficients are generally positive in line with the previous
discussion of supply function fundamentals. Using logtransform prices, the coefficients are in the
range of 0.19-0.31 and all significant. There is no clear pattern in the coefficient values across the
different quantiles. This is consistent with our previous proposition about the potentially nonmon-
otonic effects of fuel prices.

Coal prices. The coal price coefficients are generally positive and also here in line with
the previous discussion of supply function fundamentals. The sensitivities values are generally
higher than gas. Low and moderate quantiles are more sensitive than high quantiles, which may
reflect the fact that low prices are more likely to be driven by fuel fundamentals than high prices,
where scarcity may be more determinate.

Carbon emission prices. The carbon emission price coefficients are generally positive.
There magnitude is rather low (in the 0.01 to 0.07) range, decreasing with price levels.

Volatility. The coefficient of volatility changes sign from negative (low prices) to positive
(high prices). During times of low prices, an increase in volatility tends to drive prices even lower
than we can explain using fundamental factors alone. When prices are high, an increase in volatility
tends to drive prices even higher. This suggests that both low and high electricity prices overshoot
the fundamentals when the price uncertainty is high, which is a remarkable but plausible observa-
tion.

Demand forecast. The generally positive and increasing sensitivities with higher prices
reflects the intuitive price and demand relationships from the increasing supply function discussed
earlier. The coefficients are all significant apart from the 1% and 99% quantile for logtransform
prices.

Reserve margin forecast. The negative signs for margin intuitively reflect the fact that
the lower reserve margin, the higher the price becomes. The effect is also increasing with higher
prices as one would expect according to the supply function and scarcity considerations. All pa-
rameters are significant.

It should be noted that other exogenous variables (such as several seasonal dummies and
trading volume) where tested initially but where not found significant. Seasonal effects are to a
large extent captured in forecasted demand.
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5.2 Forecasting Tail Probabilities

VaR modelling requires accuracy in the forecasting of the tails of the price density rather
than in the main body of the price distribution.

5.2.1 Fully Parametric Location Scale-models

From the fully parametric location-scale models we use two different conditional densities;
Gaussian and skew Student-t. In addition, we consider two different specifications of the conditional
mean; (1) g, is a linear function of the lagged prices, and (2) 4, is a linear function of the lagged

price, InP,_,, and the factors described in Section 3.

Models 1-2:

InP38, = 3, + 3,InP38,_, + B,InP38, , + B,InP38, -+ B,InP38, ,+
BInP38, .+ BInP38, , + B,InP38, ,+ 0.z,

Here the volatility follows a GARCH(1,1) process, o, = \/ ay+ @,0._, + a,&>_,, and the conditional
density f,(-) is set to Gaussian (Model 1) and skew Student-t (Model 2), respectively.

Models 3—4:

InP38,= B, + B,InP38,_, + B,InGas, , + B5InCoal,_, + S,InCarbon,_, +

BslnDemand, + fglnReserve, + o,z,

As above, o, = \/ ay+ o, 02 + a,e? |, and f,(+) is Gaussian (Model 3) and skew Student-t (Model
4), respectively . The estimation of models 1-4 is done in two steps. First the fS-parameters are
estimated using an ordinary least square (OLS) regression where log prices is regressed against
explanatory variables. Then a GARCH(1,1) model is fitted to the residuals from the regression.!

5.2.2 Quantile Regression Models

From the quantile regression class of models, being semi parametrice without a specified
error term, the quantile distributions come from quantile dependent regression coefficients, of which,
we use the following functional forms:

Model 5: A linear model with only lagged prices as explanatory variables

0,(InP38,) = B + B{InP38,_, + B4InP38,_, + B{InP38,_;+ B{InP38,_, +
B¢InP38, .+ BiInP38, , + B4InP38, ,

1. Whilst GLS is generally preferred for estimating the standard errors of the regression coefficients, the first stage OLS
provides unbiased conditional expectations of the price and that was sufficient for the proposes of this study. We did not
need to undertake a process of in-sample regressor elimination according to significance levels and the comparative mod-
elling evaluations were mainly based upon out-of-sample backtesting.
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Model 6: A linear model with lagged price and fundamental explanatory variables

0,(InP38)) = B§ + B{InP38, | + B4InGas, , + B{InCoal, , + B{InCarbon, , +

B¢InDemand, + S¢InReserve,

Model 7: A linear model with lagged price, fundamental variables and volatility as explanatory
variables

Q,(InP38)) = B§ + B{InP38, | + B4InGas, , + B{InCoal, , + B{InCarbon, , +
B¢InDemand, + f¢InReserve, + B4 o(InP38,—u,)

Here o®>(InP38,—u,) is the conditional variance of the de-meaned log prices, and is estimated using
Model 4 described above. That is, the estimation is performed in two steps; first a GARCH models
is used to estimate the volatility, next, treating volatility as an observed variable, the linear quantile
regression is estimated.

Models 8—11:

0,(InP38)) = B, + B,InP38, , + B,InGas, , + B;InCoal, , + B,InCarbon, | +

BsinDemand, + B¢InReserve, + O (&)

Here the residual error terms, ¢,, define a CAViaR process specified around same multifactor con-
ditional expectation as we used in models 3 and 4. Observe, that, as with models 1-4, the beta
coefficients are not specific to the quantiles. More precisely, in Model 8 an indirect GARCH(1,1)
CAViaR model is chosen for ¢, in Model 9 a symmetric absolute value CAViaR model, in Model
10 a asymmetric slope CAViaR and finally Model 11 the adaptive CAViaR model is chosen for the
error term (for the adaptive model, we follow Engle et al (2004) and set K = 10).

Models 8—11 are estimated in two steps. Since conventional CAViaR specifications do not
include exogenous variables, we proceed by first estimating  using OLS regression, and then a
CAViaR model is fitted to the residuals from the regression. The first stage conditional expectation
is therefore the same as in models 1-4, and this also helps the modelling comparison to be based
purely upon the volatility aspect. Estimation of the CAViaR models is complicated by the fact that
the quantiles are latent and are dependent on the unknown parameters. We use the Matlab code of
Manganelli (2002) to estimate the CAViaR models. An alternative estimating strategy is Markov
Chain Monte Carlo, as in Gerlach et al. (2011).

5.2.3 Empirical Results

It is important to validate and compare the models in an out-of-sample forecasting context,
as it is well-known that elaborate, well-specified ex-post models may not forecast better than sim-
pler, more robust models, because of overfitting and/or evolutionary changes in the price formation
process. In contrast, the usefulness of well specified ex-post models is more often argued for their
value in ex-post market performance analysis, e.g., market monitoring, and ex ante, for facilitating
multiple scenario simulations, e.g., for risk management. The ultimate aim is of course to have a
well specified model both in-sample and out-of-sample. We use two approaches for in-sample and
out-of-sample:
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Expanding window (EW) in sample. Here we estimate the models using the first 730
observations. We then forecast quantiles (1%, 5%, 10%, 90%, 95%, and 99%) of observation 731.
Thereafter we estimate the models with the first 731 observations. We then forecast quantiles of
observation 732 and so on. At the end, we estimate models with the first 1914 observations and
forecast quantiles of the last observation 1915. That will leave us with 1915—730 = 1185 obser-
vations to verify tail forecasting performance.

Rolling window (RW) in sample. We start out estimating the models using the first 730
observations. We then forecast quantiles (1%, 5%, 10%, 90%, 95%, and 99%) of observation 731.
Thereafter estimate the models using observation 2 to 731. We then forecast quantiles of observation
732 and so on. At the end, we estimate the models using observation 1185 to 1914 and forecast
quantiles of the last observation 1915. Again, this will leave us with 1915—730 = 1185 observations
to verify tail forecasting performance.

Tables 3-5 report the percentage of times the observed price is below the estimated quan-
tile, the p-values for the unconditional coverage test by Kupiec (1995), the p-values for the con-
ditional coverage test by Christoffersen (1998), and the p-values from the two different regression
based tests defined by (4.10) and (4.11). Note that the 5% significance tests have the null hypotheses
of correct %, so ideally the actual exeedences should not be significantly different. In other words
we would not like to see bold (p<<5%) significantly different exceedences in the results. We also
record the average values of the quantile estimates. A good risk model method should not only
pass the calibration tests described above, it should also provide narrow prediction intervals, as the
width of the intervals is linked to the precision of using the method in practice. Gneiting et al (2007)
refer to “sharpness” as well as “calibration” as desirable for the assessment of density forecasts.

The overall results from the tests suggest that the parametric location-scale models based
on Gaussian distribution are seriously flawed, failing about half of the tests. Using a skew Student-
t distribution leads to clear improvements, and the models using this distribution estimated under
a rolling window has good performance with no significantly difference exceedences under the UC
and CC coverage tests at p = 5%. The linear quantile regression models including only lagged prices
(Model 5) do not provide satisfactory forecasts of the quantiles, showing performance on par with
the Gaussian based parametric location-scale model. Introducing fundamental factors in the linear
quantile regression model (Model 6) significantly improves the results, underpinning the importance
of these risk factors in predicting the tail probabilities of the electricity spot price. Adding volatility
as an explanatory variable (Model 7) improves the tail predictions further, indicating that volatility
is not adequately encapsulated through the factors in the fundamental model. This is the only model
to have no significantly different exceedences under the expanding window forecasting. The
CAViaR models show relatively good results, with the Adaptive CAViaR (Model 11) performing
well on the coverage tests with a rolling window, but not so well with an expanding .

Going into more details for each of the tests, we find, using a 5% significance level and
an expanding window, that only the linear quantile regression model with fundamental factors and
volatility as explanatory variables (Model 7) provide the correct percentage of exceedences. Fitting
the models to a rolling window generally improves the unconditional coverage, indicating that the
data generating process may change over time. Using a rolling window, Model 4, 6, 7, 8 and 11
all provide correct unconditional coverage. Examining the clustering of exceedances of the quan-
tiles, we find that the location scale GARCH models all perform very well on the regression based
test defined by (4.10). The joint test of unconditional coverage and independence of Christoffersen
(1998) shows less encouraging results, but this is generally caused by incorrect percentage of
violations. The same conclusion can be drawn for the CAViaR models except the Adaptive model,
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which shows more clustering than the other CAViaR models. This is not surprising, since the
Adaptive model increases the quantile by the same amount regardless of whether the size of the
residual term exceeded the quantile by a small or a large margin. The linear quantile regression
models, especially the model including only lagged prices, show in general somewhat more clus-
tering than the other methods. The reason may be the same as for the Adaptive model; the quantile
does not depend directly on the last residual term. We also test whether the exceedances of the
quantiles are independent of the conditional quantile estimator. The results suggests that both the
location scale GARCH and CAViaR models suffer from exceedances being correlated with the
forecast of the quantile itself, especially in the lower quantiles (1%, 5% and 10%). The results from
the linear quantile regression models are more promising, particularly for the models including
fundamental information.

Turning to the width of the predictions intervals, we find that the linear fundamental
quantile regression models generally give the narrowest prediction intervals. That is, on average
they provide relatively high estimates of the low quantiles (1%, 5% and 10%) and relatively low
estimates of the high quantiles (90%, 95% and 99%). In particular, if we look at the three cases
where there are no significant exceedences under both the UC and CC tests, ie model 4 (rolling),
model 7 (expanding) and model 11 (rolling), the average widths for the 98% prediction intervals
are 1.143, 1.088 and 1.240 respectively, and for the 90% intervals they are 0.739, 0.700 and 0.737
respectively, suggesting that of the three best calibrated models, model 7 (expanding) had the most
precise prediction intervals on average. Since the precision and value of implementing the VaR
method is linked to width of the intervals, our results suggest that the linear fundamental quantile
regression models generally outperform the other models when it comes to the value of using the
methods in practice.

The motivation for comparing an expanding and rolling estimation is to provide some
evidence whether the data generating process changes over time. The electricity price in 2010 may
have different dynamics compared to the dynamics in 2005. Using both an expanding and rolling
window gives some indication if the methods we are testing are sensitive to the sample size chosen.
The quantile forecasts from the parametric location-scale models show generally a slight improve-
ment using a RW compared to using an EW. For the linear quantile regression the situation appears
to be the opposite, with a tendency to more clustering of exceedances using a RW. All CAViaR
models except the Adaptive model seem to perform slightly better using an EW. The reason may
be due to data scarcity in estimating the extreme tails of the distribution. Chernozhukov et al (2001)
observe that data scarcity problems are amplified by the presence of covariates, and that point
estimates provided by regression quantiles can be baised in the tails.

6. CONCLUSIONS

We have characterised the nonlinear effects of exogenous factors on peak hour wholesale
electricity price formation as well as in forecasting the price distribution. Using a dynamic quantile
regression model with fundamental factors and conditional volatility as explanatory variables, we
capture effects such as mean reversion, spikes, time varying volatility, and at the same time, estimate
the rather complex relationships of this price to fundamentals. For this type of data, disentangling
the intrinsic volatility from the induced effects of volatile fundamental factors is a substantial
challenge, and the proposed approach was both transparent and comparatively effective. We dem-
onstrated how lagged prices, prices of gas, coal and carbon, forecasts of demand and reserve margin
in addition to price volatility influence the peak price distribution in quite intuitive ways. In general
we find positive coefficients for the underlying fuel commodities (gas, coal and carbon prices) with,
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as expected, no distinctly sustained pattern over the quantiles, as the relative impacts of coal and
gas change over time and carbon prices adjust to some extent to their difference. The coefficient
of demand is positive, as expected, with increased effects at higher quantiles. The coefficient of
reserve margin is negative, also as expected, with increased impacts on higher quantiles. Conditional
volatility of the shocks in expectations is mainly found to have an effect on extreme low and high
quantiles, which is plausible. An increase in volatility drives low prices lower and high prices
higher, suggesting that high price uncertainty combined low/high electricity prices may lead prices
to overshoot the fundamentals.

We have also shown that the quantile regression models, taking into account the nonlinear
effects of exogenous factors, outperform the CAViaR and GARCH models, as specified on the
shocks to conditional expectations, regarding out-of-sample forecast of the price distribution quan-
tiles. Furthermore, including conditional volatility as a factor captures heteroscedasticity in trans-
parent way, with plausible market-induced effects, without the need for a fully parametric specifi-
cation. Thus, using an expanding window the multifactor-with-volatility quantile regression models
are well-calibrated and provide the most accurate forecasts. They are not outperformed and they
are also easier to implement than some of the other state-of-the-art benchmark methods. The benefit
of being able to model the distinctly different impacts of fundamentals, as well as the conditional
volatility of the shocks to the expectations, is evident not only in its explanatory power, and potential
for scenario construction in risk simulation, but also in its out of sample forecasting performance.

In summary, we have developed a practical multifactor quantile approach for predicting
the electricity price distribution. This can be used for accurate day-ahead nonparametric density
estimation (via multiple quantiles) of the spot price distributions, as an aid for producers, retailers,
and speculators in determining their optimal strategies for short-term operations, risk management,
hedging and trading.
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