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abstract

Decision-making in the energy sector and notably the power industry has to cope 
with multiple uncertain factors such as renewable forecasts, technology develop-
ments or demand growth. At the same time, multiple methods are available to 
support decision-making under uncertainty. The focus of the present review is to 
identify the merits of different optimization modelling approaches regarding vari-
ous types of decision problems under uncertainty with a focus on the electricity sys-
tem. Stochastic optimization and robust optimization are scrutinized along with 
other, less known methods like information gap decision theory (IGDT) or model-
ing-to-generate-alternatives (MGA). Also, simple deterministic equivalents, scenar-
io and sensitivity analyses are considered when it comes to solving operational 
decision problems, investment decisions and policy choices regarding regulatory 
settings. The latter deserve particular scrutiny in a context of decarbonization and 
energy system transformation which embraces several decades and multiple deci-
sion makers in a multi-level governance context.
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f  1. INTRODUCTION  g

Uncertainties are ubiquitous in everyday life and in business - there are even theories of 
the firm that conceptualize firms and other organizations as institutions to reduce revenue 
uncertainties (Schneider 1995). At the same time, the standard models for energy markets and 
energy decision support frequently do not deal explicitly with uncertainties (for an overview 
cf. e.g. Ventosa et al. 2005) - while there is a burgeoning stream of research over at least the 
last three decades trying to develop decision support models that explicitly deal with risk and 
uncertainty in the energy context. As many of these models are optimization models, the sub-
sequent discussion focuses on this model category. We therefore leave aside for future review 
the further categories discussed by Ventosa et al. (2005), namely equilibrium and simulation 
models. Optimization models are especially used to analyze pathways for the decarbonization 
of the energy system at different scales (e.g. Balyk et al. 2019; Gerbaulet et al. 2019; Hupp
mann et al. 2019) - which implies time horizons of several decades and correspondingly large 

a House of Energy Markets and Finance, University Duisburg-Essen, Germany.
b PhD Candidate, House of Energy Markets and Finance, University Duisburg-Essen, Germany.
* Corresponding author: christoph.weber@uni-due.de.

Economics of Energy & Environmental Policy, Vol. 10, No. 1. Copyright  2021 by the IAEE. All rights reserved.



6� Economics of Energy & Environmental Policy

Copyright © 2021 by the IAEE. All rights reserved.

uncertainties. Against this background, the present contribution primarily aims to bridge the 
gap between the specialist literature and the general and political debate on uncertainties re-
lated to energy systems and their transformation with a focus on the power system as a key 
sector for decarbonization. The question to be addressed is thereby less of the order on how 
to do things right but rather on how to do the right things, i.e., what are adequate models for 
different types of decision problems.

In this perspective, we subsequently first provide a typology of decisions in the energy sec-
tor and also discuss different types of uncertainties (Section 2). Based on these typologies, we 
then provide an overview of different methods to incorporate uncertainties in various decision 
support models (Section 3). We thereby distinguish operational and investment decisions at the 
company level as well as political decisions on regulatory settings. Uncertainties are particularly 
challenging in the latter context - and yet the way forward is not necessarily through using the 
most advanced decision theoretical models. Nevertheless, improved conceptual framings may 
be helpful to address the still largely unresolved challenges of energy and climate policy - as is 
discussed in the concluding Section 4. 

f  2. ENERGY-RELATED DECISIONS AND UNCERTAINTIES  g

The energy and especially the electricity sector are characterized by long-lived investments 
along with considerable political interference - the latter being related both to the networks be-
ing monopolistic bottlenecks and to the energy sector being the by far most important contrib-
utor to Greenhouse Gas emissions and also other air-borne emissions. An obvious classification 
of energy-related decisions is thus according to the type of decision makers and the degree of 
commitment. This leads to three basic types of decisions (cf. also Fig. 1):

1. Political decisions on regulatory settings
2. Corporate investment decisions
3. Corporate operational decisions

It is worth noting that at all three levels, different types of decision makers have to be dis-
tinguished. In many cases, decisions are also not taken by single decision makers as frequently 
assumed in normative decision theory but by groups of decision makers, e.g., the members of 
the board of a company or the members of parliament.

As depicted in Fig. 1, political decisions are made at the supranational, national, regional, 
and even local level. The latter are for example relevant when it comes to defining priority areas 
for the installation of new wind turbines. In general, political decisions involve multiple stake-
holders and are taken under consideration of multiple objectives. In addition, cause-effect re-
lationships and interactions for many policy instruments are uncertain. This applies especially 
to the case of price-based instruments and support mechanisms such as CO2 taxes.

The second level of decisions comprises investment decisions. They do not only have 
long-lasting effects, but they are frequently lumpy (e.g., construction of a certain line or not). 
Consequently, they typically also have a high financial impact on the companies requiring 
thorough risk assessments. In terms of riskiness, it is important to distinguish between in-
vestments in regulated network businesses and investments in other parts of the energy value 
chain. For the former, corporate risk remains limited even under so-called incentive regulation 
(Littlechild 1983; Jamasb and Pollitt 2000) given that prices are regulated, and customers 
are unable to change the service provider. In deregulated markets, risks are prima facie much 
larger, as various uncertain and stochastic factors influence profitability. For instance, invest-
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ment decisions in generation facilities are based on anticipated revenues earned on the elec-
tricity markets for up to several decades in the future which are subject to uncertain future 
conditions like the development of electricity demand, CO2 and fuel prices or the evolution of 
generation and storage capacities (cf. e.g. Weber 2005; Hasani and Hosseini 2011). Obviously, 
both the risk and the return of these investments may be strongly affected by political decisions 
such as support mechanisms for renewables or phase-out decisions. 

On the third level are the operational decisions. These decisions are made by market par-
ticipants as well as network and system operators. Examples of operational decisions in the 
European market context are the submission of bids to energy and reserve markets by power 
plant operators or portfolio marketers. Grid operators have to determine the commercial trans-
action constraints for market coupling or decide on switching operations. A distinctive feature 
of operational decisions compared to investment decisions is that they are taken repeatedly, 
e.g., daily. The specific circumstances for the decisions may vary from day to day, yet the type 
of decision to be taken remains the same. Still, important short-term uncertainties may arise 
from various operational factors such as infeed of renewables, demand, power plant and line 
availabilities, etc.

FIGURE 1
Decisions and decision-makers in a national energy system perspective.

Source: Own illustration.

In normative decision theory, decisions under uncertainty are generally subdivided into 
decisions under risk and decisions under ignorance (Peterson 2009; Bamberg et. al. 2019). 
Decision-making under risk refers to a setting where objective probabilities for the outcomes of 
uncertain factors are available and known, e.g., from past observations of weather.1 In this case, 
the basic decision rule according to normative decision theory is to maximize the expected 

1. As a consequence of climate change, probabilities obtained from past observations may yet be adjusted.
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utility of the decision maker (e.g. Peterson 2009, 65s.). Under ignorance (also referred to as 
Knightian-uncertainty, cf. Knight 1921), no objective probabilities are available. Following 
Savage (1954), subjective probabilities might be used in such a case and the corresponding 
decision rule then is the maximization of subjective expected utility. In a multi-person decision 
making context, agreeing on subjective probabilities is yet challenging.

Regarding the description of uncertainties themselves, more detailed classifications have 
been proposed inter alii by Soroudi and Amraee (2013) and Aien et al. (2016). They classify 
uncertainty modeling methods into six categories, which in fact refer partly to the characteriza-
tion of the uncertain parameters itself and partly to the corresponding decision-support mod-
els: Besides the probabilistic, possibilistic, and hybrid possibilistic-probabilistic methods they 
identify the information gap decision theory, interval-based analysis, and robust optimization 
as approaches to cope with uncertainties.

Subsequently we yet rather take the decision situations as starting point for classifying the 
multiple available methods. In view of energy-related decision support, we may distinguish 
decisions according to:

1. The type of decisions,
2. The type of uncertainties present,
3. The characteristics of the decision makers.

Subsequently we primarily use the first distinction but will come back to the other two 
where appropriate. Regarding the characteristics of the decision makers, the number of deci-
sion makers is particularly important, since a common consistent preference ordering may not 
exist in the case of multiple decision makers. Also risk aversion is an important characteristic 
of many decision makers.

f  3. METHODS TO SUPPORT DECISION-MAKING IN POWER SYSTEMS UNDER  g 
UNCERTAINTIES 

Given the previous considerations, we subsequently discuss the methods available for en-
ergy-related decision support by type of decision. We start with operational decisions, even 
though the regulatory settings and the investment decisions are usually a prerequisite for op-
erational decision-making. Yet taking the last decisions first is conceptually in line with Bell-
man’s principle of optimality (Bellman 1957), which implies that the last decisions should 
be considered first and then solutions for preceding stages may be induced. Another reason 
for discussing operational decision-making first is that there is a very broad body of literature 
available in that field regarding the treatment of uncertainties. When it comes to giving exam-
ples we subsequently focus on the electricity system for two reasons: on the one hand, forecast 
uncertainties are most relevant in that field given the limited storability of electricity, on the 
other hand there is also the largest body of literature in this field, notably in connection with 
optimization models.

Thereby it is worth noting that the introduction of competitive electricity (and gas) mar-
kets has led to a much more dynamic market environment and this has also increased both 
the number of uncertain factors and their relevance. Notably electricity market prices at the 
wholesale level are an important yet uncertain factor when it comes to both operational de-
cision-making and investments. Ventosa et al. (2005) present an overview of methods for 
electricity market modeling. They categorize the existing approaches into three main classes, 
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namely optimization models, market equilibrium models and simulation tools. Subsequently, 
the focus will be on optimization models as they reflect the ambition of decision makers to 
make the best possible decisions. At the same time, they are also frequently used to describe 
market outcomes in settings with perfect or at least working competition. 

3.1 Operational decision-making 

Most deregulated electricity markets are characterized by a sequence of markets, support-
ing the planning and coordination of system operation under uncertainty. Major operational 
decisions like unit commitment are usually done with a certain lead time, e.g., on a day-ahead 
basis. Subsequent market timeframes like intraday, balancing, or real-time markets support 
dispatch decisions and serve to balance and operate the system in real-time. Besides the buy 
and sales decisions on the different markets, corresponding operational decisions are taken 
repeatedly on a day-to-day, hour-to-hour or even intra-hour basis. 

The most well-studied operational decision problem in the energy sector is without doubt 
the unit commitment and dispatch problem, i.e., the problem of determining the optimal 
power plant operation schedule. In European style electricity markets with self-scheduling of 
generators, the problem is solved by each generation company individually whereas in the U.S. 
and in similar centrally organized markets it is solved by the system operator jointly with the 
market clearing and congestion management problem. Traditionally, the unit commitment 
and dispatch problem is formulated as a deterministic mixed-integer problem (e.g. Sheble and 
Fahd 1994; Baldick 1995; Padhy 2004).

Even before the liberalization of the electricity sector, uncertainties such as failures of gen-
eration units and demand forecast errors have been considered in several models (e.g. Dillon 
et al. 1978; Bunn and Paschentis 1986). While demand forecasts have been improved over 
time, the increasing feed-in of intermittent renewable energy sources has led to new sources of 
uncertainty and has spurred the development of new approaches.

In the deregulated market context, the following major approaches have been put forward 
to cope with uncertainties in unit-commitment and dispatch (cf. the reviews by Zheng et al. 
2015; van Ackooij et al. 2018):

●  Use of the deterministic equivalent
●  Stochastic optimization
●  Chance-constrained optimization
●  (Stochastic) (Dual) Dynamic Programming
●  Robust optimization

3.1.1 Deterministic equivalent

This approach corresponds to a continued use of the traditional deterministic approaches - 
considering that some or all parameters in the model may be uncertain but can be represented 
by their ex-ante expected values (cf. Birge and Louveaux 2011). This approach is straightfor-
ward and rather rapid and may be complemented by sensitivity calculations to cope e.g., with 
major unforeseen events such as line outages. This is still the common practice in the North 
American ISO markets (cf. Litvinov et al. 2019) and also in many self-scheduling European 
utilities. In the North American ISO markets, deterministic day-ahead unit commitment is 
thereby frequently complemented by network security checks (so-called security-constrained 
unit commitment SCUC, e.g. Fu et al. 2005).
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3.1.2 Stochastic optimization

Stochastic optimization, also known as stochastic programming, explicitly considers the 
future uncertain values of some parameters. With emphasis on the unit commitment problem 
under uncertainty, Zheng et al. (2015) and van Ackooij et al. (2018) discuss the basic structure 
of the underlying problem and review main contributions with regards to stochastic methods. 
Zheng et al. (2015) also emphasize that the modelling of the uncertainties themselves is key 
for the obtention of good results in stochastic optimization.

This notably requires the selection of the stochastic factors to be considered explicitly and 
an appropriate modelling and empirical estimation of the corresponding stochastic processes. 
The most important uncertain factors in future energy systems will be probably wind and solar 
forecasts (cf. the reviews by Zhang et al. 2014; Antonanzas et al. 2016) along with demand 
uncertainty for electricity (cf. Hong and Fan 2016) and possibly also heat (in case of combined 
heat-and-power systems). But power plant and line outages may also be considered explicitly 
and in hydro-dominated systems, inflow uncertainty may be a major driver of system opera-
tion. In the case of European-style power markets, unit commitment and dispatch are handled 
at the level of individual generation companies. They are thus less interested in the system-wide 
infeed from renewables and electricity demand levels but rather take forecasts of electricity 
prices (cf. Nowotarski and Weron 2018) as inputs for their bidding and generation scheduling. 

Based on empirical estimates of the stochastic process parameters, usually Monte-Carlo 
simulations are performed to obtain multiple possible realizations of the uncertain factors. 
These need then to be condensed into a limited number of scenarios to make stochastic opti-
mization programs manageable. Two basic approaches are in use for scenario reduction, on the 
one hand iterative scenario reduction techniques based on probability metrics (e.g. Dupacova 
et al. 2003; Heitsch and Römisch 2009) and on the other hand moment-matching approaches 
(e.g. Høyland et al. 2003). Recent research suggests that instead of the Wasserstein distance 
underlying the previously mentioned scenario reduction approaches, the so-called energy dis-
tance may be more appropriate for scenario reduction when it comes to preserving statistical 
properties like the mean or variance of the original simulations (cf. Ziel 2020).

The resulting scenarios then form a scenario tree as depicted in Fig. 2. As shown in Fig. 
2, the distribution of uncertain parameters is approximated by a finite number of possible 
situations, or scenarios. A scenario tree is composed of one root node (1) followed by several 
branches (2 to 4), which have their termination points in leaves (5 to 10). The transition be-
tween the nodes is described by transition probabilities (p(1,1) etc. in Fig. 2). The root stands 
for first-stage decisions. An example for a typical root decision is the unit commitment for 
large conventional power plants, which has to be decided day-ahead.

The branches and leaves correspond to further decision stages, with decisions being made 
after the arrival of new information, e.g., update of demand forecasts. Based on this informa-
tion, the root decisions are modified whenever beneficial and possible. In this terminology, a 
scenario is a path from the root to one leaf. Decision stages correspond to different moments 
in time where decisions are taken. In early stages, several scenarios share the same information 
and the same decisions as depicted by the successive bifurcations of the scenario tree. Note that 
in many energy modelling applications, each stage may comprise several time steps as depicted 
in Fig. 2. 

Considering the typical decision structure of liberalized electricity markets with day-ahead 
markets and subsequent intraday or real-time markets, a two-stage stochastic program seems 
a natural choice. Two-stage stochastic programs have been extensively studied theoretically 
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(e.g. Carøe et al. 1997; Birge and Louveaux 2011), as well as regarding applications to power 
systems (e.g. Nürnberg and Römisch 2002; Bouffard and Galiana 2008; Garcia-Gonzalez et 
al. 2008). Notably Papavasiliou and Oren (2013) model the unit commitment of slow gener-
ation units in the first stage and the unit commitment of fast units and dispatch of all units in 
the second stage. Their model considers uncertain wind production and failures of generation 
units and transmission lines. 

Considering continuous updates of uncertain parameters like wind production, various 
authors also develop multi-stage stochastic programs. Both Carpentier et al. (1996) and Takriti 
et al. (2000) focus on the unit commitment problem and consider random failures of genera-
tion units through scenario trees. They find that the stochastic models lead to significant cost 
savings compared to a deterministic model, where inherent uncertainties like generation out-
ages are considered by reserve margins. The WILMAR model, as presented notably in Tuohy 
et al. (2009) and Meibom et al. (2011), implements a three-stage recursive approach, which 
allows to model uncertain forecast errors of wind and other renewable production for large-
scale systems. Accordingly, the day-ahead market and unit commitment problem is solved 
(root decision) and decisions are reoptimized after the arrival of new information, i.e., more 
accurate wind power forecasts (recourse decision). For the simulation of future operational de-
cision-making, the model is combined with a rolling-horizon approach that allows to analyze 
the operation for entire years in the future.

Instead of minimizing the expected costs, stochastic programming may also be modified 
to include risk-aversion by decision makers (e.g. Schultz and Tiedemann 2006; Carrion et al. 
2007; Lima et al. 2018). Thereby usually the conditional Value-at-Risk (cVaR) or first-order 
lower partial moments (LPM) are used, since these are coherent risk measures (cf. Artzner et al. 

FIGURE 2
Representative sketch of a scenario tree.

Source: Own illustration.
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1999) and preserve a (mixed-integer) linear program formulation. Yet with respect to repeated 
operational decisions like unit commitment and dispatch, decision makers are likely to be only 
mildly risk averse - as the potential losses for each single decision sequence are limited and 
losses on one day are likely to be compensated by gains on other days.

3.1.3 Chance-constrained programming

In the case of stochastic programming, the uncertainty in parameters translates into an 
objective function that reflects a weighted sum of the different possible scenarios. Chance-con-
strained programming rather considers the probabilities of different outcomes by defining 
probabilistic constraints, i.e., constraints that have only to be fulfilled with a certain probabil-
ity. This may be seen as an appropriate way to handle some technical constraints like minimum 
up and minimum downtime constraints or ramping constraints which are in fact rather engi-
neering estimates than strict physical system constraints. Violating them with a small probabil-
ity may be tolerable. Applications in the field of unit commitment and dispatch may be traced 
back to Ozturk et al. (2004). Other contributions include Wang et al. (2012) and Pozo and 
Contreras (2013). A major drawback of chance-constrained programming is that probabilistic 
constraints may lead to non-convex problems which are both computationally demanding and 
with global optimality of solutions being difficult to prove.

3.1.4 Stochastic dynamic programming and stochastic dual dynamic programming

In hydro-dominated power systems, the natural variation in rainfall and other weather 
variables introduces a source of uncertainty that impacts the reservoir levels and corresponding 
available energy strongly at time scales of weeks and seasons. Implementing this as a stochastic 
program would require multiple stages and correspondingly a huge number of decision vari-
ables - implying very long solution times for the resulting stochastic program. If only the res-
ervoir levels are included in time-coupling constraints and the number of such time-coupling 
variables is hence limited, an alternative formulation and solution approach is possible. This 
is a stochastic version of the dynamic programming approach going back to Bellman (1957). 
Thereby the reservoir filling levels as key decision variables are discretized and decisions are 
determined starting from the final stage of the planning horizon and solving the problem 
recursively backwards in time. At each stage, the optimal decisions are taken considering the 
expected value of water remaining in the reservoirs (“cost-to-go”) which has been derived from 
the following time step. Turgeon and Charbonneau (1998) study the hydropower system of 
Quebec (Canada) while Wolfgang et al. (2009) analyze the Nordic power system applying sto-
chastic dynamic programming to find the optimal strategy of hydropower generation.

As an alternative to stochastic dynamic programming, Pereira (1989) and Pereira and 
Pinto (1991) develop an approximate algorithm called stochastic dual dynamic programming. 
The algorithm aims at providing efficient solutions for large-scale systems. It has been first 
used to determine optimal short- and mid-term storage strategies for hydro-dominated power 
systems like Brazil or Norway (e.g. Rougé and Tilmant 2016). Later, the algorithm has been 
extended to long-term problems covering planning horizons over several years (e.g. Gjelsvik et. 
al. 2010). A piece-wise linear approximation of the expected-cost-to-go function is obtained 
from the dual solutions of the optimization problem at each stochastic stage, making use of 
the so-called Benders decomposition (cf. Benders 1962). Guigues and Römisch (2012) con-
sider risk-averse formulations of multistage stochastic linear programs and use stochastic dual 
dynamic programming to approximate the recourse function.
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3.1.5 Robust optimization

One of the basic requirements of the discussed stochastic programming approaches is the 
knowledge of the relevant uncertainties and their stochastic characterization, i.e., the proba-
bilities of occurrence. Where this information is not or only partly available, other uncertainty 
modelling techniques like robust optimization can support operational decisions. 

Robust optimization is based on the idea that parameters subject to uncertainty are not 
described by their probability density function but modelled through an uncertainty set. This 
set, also called ambiguity set, allows to consider all possible realizations of the uncertain param-
eters and then the optimum is sought for the worst-case realization. The standard security-con-
strained unit-commitment and dispatch problem (SCUC) may be considered as a particular 
case of robust optimization with a finite uncertainty set corresponding to the contingencies 
(line outages) considered (cf. Street et al.2011). Yet generally, continuously valued uncertainty 
sets are considered in robust optimization, in the simplest case based on value ranges for all un-
certain parameters (so-called uncertainty box model). A robust optimization approach to solve 
the security-constrained unit commitment problem considering uncertainty sets of nodal net 
injections is developed in Bertsimas et al. (2013). Other applications of robust optimization to 
the unit commitment problem include Jiang et al. (2012) and Zhao et al. (2013). 

Information gap decision theory (IGDT) may be seen as a reverse-engineered version of 
robust optimization. It also does not consider the probability of uncertain parameters, but 
rather focuses on the differences between parameters and their best estimate. Then the impact 
on decisions is evaluated and for a given maximum deviation from the optimal outcome, 
the allowable deviation in the input parameters is estimated. The concept is often applied in 
fields like biodiversity or water resource management (e.g. Hipel and Ben-Haim 1999), yet 
Mohammadi-Ivatloo et al. (2013) and others provide applications to the unit commitment 
and dispatch problem for self-scheduling generation companies. It is particularly useful if no 
empirical observations are available to estimate parameter uncertainty.

Distributionally robust optimization on the contrary aims at using available empirical 
observations and a corresponding distribution estimate for the uncertain parameters like re-
newable infeed. Yet it considers the possibility that the actual distribution may deviate from 
the estimated one, e.g., due to data errors, lack of observations or inadequate distributional 
a-priori assumptions. Therefore, decisions are robustified against possible deviations from the 
estimated distribution. The size of the deviation is often evaluated using the so-called Wasser-
stein metric, which provides an integral measure of the distance between two distributions. A 
first application to the unit commitment and dispatch problem can be found in Xiong et al. 
(2017), further applications include Duan et al. (2018) and Zhao and Jiang (2018).

For both robust optimization and information gap decision theory, the solutions obtained 
are rather conservative since the optimization focuses exclusively on the worst-case outcome. 
Robust optimization is therefore also labelled a min-max strategy since it minimizes the maxi-
mum of all possible cost outcomes (or max-min in case of profit maximization). It corresponds 
hence to highly risk-averse decision making. This contrasts with stochastic optimization which 
minimizes the expected value of costs in its standard version. By including a risk term such as 
CVaR or LPM, varying degrees of risk aversion may also be included in stochastic optimiza-
tion (cf. section 3.1.2). Yet when using the same uncertainty set, robust optimization yields 
more risk averse outcomes since it exclusively considers the worst case. Distributionally robust 
optimization is to some extent less conservative than standard robust optimization as the con-
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sidered uncertainty set contains only possible parameter distributions that do not deviate “too 
much” (in the Wasserstein metric) from the best guess. 

3.1.6 Other approaches

Besides the aforementioned approaches rooted in classical optimization and decision the-
ory, also various (meta-)heuristic approaches have been applied to unit commitment and dis-
patch problems under uncertainty. These include fuzzy sets (e.g. Wang et al. 2018), particle 
swarm optimization (e.g. Man-Im et al. 2017) as well as evolutionary and genetic algorithms 
(e.g. Reddy et al. 2015). For these approaches, generally no proof of convergence towards the 
optimal solution is available, yet they may provide possibilities to tackle non-convex problem 
instances or multi-objective settings. Yet the unit commitment and dispatch problem under 
uncertainty has been abundantly studied using classical optimization approaches and power-
ful numerical solvers are available for these problem instances. Therefore, the added value of 
non-conventional approaches seems rather limited.

3.1.7 Challenges for application of stochastic methods in operational planning

The discussion in the preceding sections has illustrated that there are multiple methods 
and applications available for including uncertainties in operational decision support tools, 
notably when it comes to the unit commitment and dispatch problem that is at the heart of 
the operational planning in the electricity industry. Still the broad application of stochastic 
methods in this field faces at least three challenges: 1) the large number of potential uncer-
tainties to be considered, 2) the curse of dimensionality and 3) the necessity to provide valid 
estimates of the probability distributions as input to the formulated stochastic problem. The 
rapidly growing availability of data, methods and tools certainly alleviates challenge 3) to some 
extent. Yet still the high dimensionality of comprehensive stochastic models provides a com-
putational challenge - the more since the solutions have to be computed within minutes to be 
useful for operational decision-making. But even without this time constraint, the sheer prob-
lem sizes may rapidly get discouraging. With T time steps, K stochastic factors and N possible 
realizations of the stochastic factors per time step, we end up with (NK )T paths through the 
scenario tree. With 24 timesteps in day-ahead unit commitment, 4 stochastic factors and just 
3 possible realizations per factor this means (34 )24=396≈6⋅1045 scenarios - compared to just 
one single scenario in case the deterministic equivalent is used. Hence a major effort has to 
be devoted to identifying the most important stochastic factors and their realizations and to 
limit the number of stochastic stages to a few. Computational experience with the WILMAR 
model and results reported by Sturt and Strbac (2012) suggest that for standard applications, 
two stochastic stages may be enough, yet extreme events need to be appropriately represented.

Rolling planning as implemented for example in the WILMAR model is a possibility 
to circumvent the aforementioned curse of dimensionality. The basic principle is illustrated 
in Fig. 3. Rolling planning consists of repeated optimization runs which follow on informa-
tion updates (e.g., new renewable forecasts). In Fig. 3, these updates occur every three hours. 
Without information updates (i.e., in the absence of uncertainties), rolling planning can be 
seen as an approximate decomposition of a longer-term planning problem. As such it suffers 
of the difficulty of assigning appropriate terminal values, e.g., to storage filling levels or to unit 
operation statuses - also in the presence of uncertainties. Yet in the presence of uncertainties, it 
is often the only possibility to assess the effects of repeated decisions taking into account these 
uncertainties. With regular information updates, the longer-term problem would not be solv-
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able as a stochastic program due to the aforementioned curse of dimensionality. Also for other 
approaches like robust optimization or chance-constrained programming, the impacts in the 
longer run may be assessed using a rolling-planning approach.

3.2 Investment decision-support

Compared to operational decisions, investment decisions have implications over much 
longer time periods as mentioned in section 2. Models for investment decision support must 
hence consider the short-term uncertainties during the later operations along with the long-
term uncertainties related to all the preceding years. This implies that potentially more uncer-
tain factors become relevant and for each uncertain factor the range of possible values is larger. 
E.g., day-to-day changes in fuel and CO2 prices are mostly in the order of 2 % or less. But over 
one or two years, these prices may well change by 50 % or more - even outside the specific sit-

FIGURE 3
Sketch of rolling planning over a half day with replanning every three hours.

Source: Weber et al. (2009).
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uation of a pandemic. At the same time, over periods of several years, structural breaks such as 
new technologies, policy changes, etc. are more likely. This implies that historical observations 
and relationships may not that easily be extrapolated to the future. 

Correspondingly, the empirical foundations for the application of stochastic optimization 
or others of the previously discussed approaches are weaker. Yet with increasing computational 
capabilities and recent conceptual advances, various approaches have been developed to incor-
porate uncertainties explicitly into longer-term models (e.g. Fürsch et al. 2014; Seljom and 
Tomasgard 2015; Ioannou et al. 2017; Xu and Hobbs 2019). In any case, the consideration of 
uncertainties is an important issue for successful businesses. 

In large companies, the standard business practice for investment decision support is to 
use the discounted cash flow (DCF) approach (e.g. Brealey et. al. 2016) to compute the net 
present value of an investment. Uncertainties and risk aversion are only indirectly reflected in 
this approach namely through the applied discount factor that should reflect the average capi-
tal cost of the firm - which in turn depends on the risks the firm is exposed to.2 

An important input to the DCF approach is the cash flows over the lifetime of the project. 
These cash flows depend on future market prices and those are in turn impacted by various 
uncertainties. Both practitioners and academics then frequently use scenarios to describe fu-
ture uncertainties more explicitly and apply bottom-up electricity market models to derive 
corresponding price scenarios (e.g. Keles et al. 2011; Spiecker and Weber 2014). 

These longer-term techno-economic models are known in the power systems literature 
as generation expansion planning (GEP) models. Koltsaklis and Dagoumas (2018) provide 
a detailed review of recent developments in that field, including also stochastic modelling 
approaches - these basically fall into the same categories as discussed above for operational 
decision-making. Another review is provided by Oree et al. (2017) with a particular focus on 
renewable energies and the uncertainties they are inducing. Yet it is important to state that 
system-wide generation expansion models are not useful in deregulated markets for direct de-
cision support to investors. Rather the generation investment decisions are taken by individual 
market players who base their decision on expected market prices (cf. above) rather than on an 
optimal system development path. 

The GEP models may then inform the investors and other stakeholders on potential de-
velopments of the generation mix and the market prices. In particular, investors may use them 
as stated before to derive input for the DCF-based investment valuation.

An alternative to the use of the DCF approach are real option methods (cf. Dixit and 
Pindyck 1994). Thereby it is important to distinguish the valuation of operational flexibilities 
as real options (as e.g. in Tseng and Barz 2002; Weber 2005) from the use of the real options 
approach to evaluate investments (cf. e.g. Kumbaroğlu et al. 2008; Yang et al. 2008; Boomsma 
et al. 2012). In the latter case, the main optionality considered is the possibility to delay an 
investment. This provides incentives to investors to purchase land or exploration licenses up-
front, yet then to wait with the actual investment until prices and other conditions are partic-
ularly advantageous. Such modelling provides interesting insights, yet legal constraints and the 
sensitivity of the approach to the assumed stochastic processes may be invoked as reasons why 

2. According to the standard textbook model, the so-called capital-asset pricing model (CAPM), only systematic risk, i.e. risk 
correlated with the general (asset) market risk, impacts the capital costs (cf. Sharpe 1964; Lintner 1965; Mossin 1966). Yet both 
advanced theoretical models (cf. Goyal and Santa-Clara 2003; Acharya et. al. 2013) and applications in the energy sector (cf. 
Schober, Schaeffler, and Weber 2014; Kitzing and Weber 2015) suggest that also idiosyncratic, non-systematic risk matters. Cf. 
also the empirical studies by Polzin et al. (2019) on factors influencing capital costs for renewable investments.
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it has only found limited application in practice. The general idea incorporated in real options 
that early commitments reduce flexibilities and that later decisions can be made based on 
improved information has also been implemented in stochastic programming approaches to 
the generation and/or transmission expansion problem (e.g. van der Weijde and Hobbs 2012; 
Munoz et al. 2014; Konstantelos and Strbac 2015). A discussion of the role of “real options 
thinking” in energy modelling is provided by Schachter and Mancarella (2016) who also em-
phasize the challenges when making practical use of real option approaches.

Practitioners as well as academia instead frequently use the scenario approach to consider 
long-term uncertainties - and this in various economic sectors. It allows to describe interde-
pendent uncertainties and makes them more tangible by focusing on a limited number of 
possible alternative developments (cf. Gausemeier et. al. 1998; Börjeson et. al. 2006; Höjer et. 
al. 2008). According to Schoemaker (1991), the use of scenarios is particularly advantageous 
for managerial decision-making in a context, where costly surprises have been experienced or 
significant change and uncertainty are ahead. This is certainly true for the energy sector, and 
correspondingly the scenario approach has been an important field for the use of scenarios all 
throughout the last decades, e.g. Bentham (2014), Rogelj et al. (2018), ENTSOG/ENTSO-E 
(2019), IEA (2019) and Shell (2019). In the context of energy-related decision making, the 
distinction between normative and descriptive scenarios (cf. Ducot and Lubben 1980; van 
Notten et al. 2003) is particularly important.3  Whereas the former aim to show pathways to-
wards a predefined future as e.g. defined through decarbonization goals, the latter are not pur-
poseful. They are therefore more appropriate when it comes to exploring the uncertainties and 
risks that decision-makers are facing, e.g., when it comes to investment decisions. To illustrate 
the difference, think about investments in a new hydrogen infrastructure. Normative scenarios 
will provide an indication how much hydrogen pipelines and electrolyzers are needed (or are 
efficient to install) when e.g., climate neutrality is to be achieved by 2050. Descriptive scenar-
ios instead describe possible futures, which as seen of today may also include the possibility 
that policy priorities shift away from climate neutrality. Correspondingly they may inform a 
potential investor into electrolyzers that there is a risk that the future may not be as bright for 
electrolyzers as it shines under a climate-neutrality scenario.

Yet one should note that scenarios - at least as commonly applied - do not include prob-
abilities of occurrence. Hence a full quantification of risks is not possible. The extent of losses 
(or gains) might be computed using the prices obtained in a certain scenario, yet the expected 
losses/gains or a risk measure like the conditional Value-at-Risk cannot be computed unless 
probabilities are assigned to the scenarios. A robust optimization may however be performed 
by selecting the decision alternative that performs best under the worst-case scenario - this is 
an extremely risk-averse decision behavior, as mentioned above. It correspondingly does not 
reflect a typical economic risk-return tradeoff.  

To summarize, five basic alternatives may be distinguished on how to account for uncer-
tainties when it comes to investment decisions:

1. � Base the investment appraisal on expected future prices and corresponding cash flows 
and apply (sufficiently) high discount rates to account for the uncertainty of these cash 
flows.

2. � Make use of the real options approach to include the value of waiting in the investment 
appraisal.

3. For further scenario classifications cf. the above-mentioned sources as well as Börjeson et al. (2006).
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3. � Use scenarios to inform the decision makers about the possible risks associated with an 
investment.

4. � Apply stochastic optimization, possibly accounting for risk aversion in the objective 
function, based on longer-term scenarios that have been assigned (subjective) proba-
bilities.

5. � Proceed as under 1., but additionally apply risk analysis using a combination of quali-
tative and quantitative methods.

Note that alternative 3) does not include by itself an unequivocal decision rule. But it may 
be complemented by a robust optimization, which would select the investment alternative 
that performs best under the worst conditions (i.e., max-min). Alternatively, also some other 
decision rule as defined for decisions under ignorance (cf. Peterson 2009; Bamberg et al. 2019) 
may be used. 

Alternative 5) deserves some more attention as it has not been discussed earlier and seems 
also underresearched.4  It is rooted in the institutional rulings applicable to large companies 
under most legislations. Those impose obligations on stock-listed companies regarding corpo-
rate risk management (e.g., through the KonTraG in Germany, the LSF in France or the SOX 
in the U.S).5 Although the requirements for corporate risk management are typically rather 
unspecific in these general laws, they oblige companies to monitor all major risks threatening 
the existence of the company and to identify suitable countermeasures. This implies also that 
major investments have not only to be assessed in view of their expected returns but also re-
garding the financial and other risks they may induce for the company. In this vein, risk assess-
ment should complement standard investment assessments. In line with standard enterprise 
risk management practices (e.g. Collier 2009; Chapman 2012), this should include phases of 
risk identification, risk analysis and risk evaluation. Especially financial risks may be assessed 
using quantitative models for a worst-case (or at least low performance) scenario. If risk exceeds 
the prespecified corporate risk appetite, the investment should not be carried out. 

Even though this approach also considers the worst-case scenario, it has distinct features 
compared to robust optimization: in the case of robust optimization, the optimization itself 
focuses on the worst-case scenario, whereas in the mean plus risk assessment framework, the 
worst-case scenario is only evaluated as a constraint. This makes it also distinct from the mean-
risk frameworks used in stochastic programming where a risk term is included in the objective 
function. 

3.3 Political and regulatory decision-making

Whereas for some it is self-evident that policymaking is fundamentally different from de-
cision-making in firms, others tend to argue that they should be guided by the same principles 
and that similar mechanisms may be observed. It is beyond the scope of this paper to provide 
a detailed analysis of these diverging perspectives and the different corresponding schools of 
thoughts. 

Yet even if economists, engineers, and many others tend to agree that decision-making 
in both areas should be guided by the same principles (notably of rationality), political de-

4. A risk-constraint is introduced explicitly in the operational unit commitment model by Li et al. 2007) as well as a few fol-
low-up papers, yet there it is formulated using a downside risk measure which requires scenario probabilities.

5. Cf. KonTraG (1998), LSF (2003), SOX (2002).
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cision-making is much more than its corporate counterpart characterized by the following 
aspects:

1. � Multiple objectives,
2. � Multiple stakeholders,
3. � Cause-effect relationships for many policy instruments uncertain,
4. � Multi-level decision making.

In the tradition of utilitarian ethics, economics tends to consider maximization of welfare 
as the ultimate and unifying objective of political decision-making. Yet in practical policymak-
ing, multiple objectives are postulated more or less side-by-side, such as the famous energy 
policy trilemma of (1) security of supply, (2) affordability (or economic efficiency) and (3) 
environmental protection (e.g. Doukas et al. 2008; Heffron et al. 2015). And obviously multi-
ple stakeholders are involved when it comes to energy policy making, including among others 
both regulated and non-regulated firms, local communities, and NGOs. A further challenge to 
political decision-making is that there is often considerable uncertainty regarding the strength 
(or even the nature) of cause-effect relationships for policies. This is rather an epistemic un-
certainty, related to the limits of scientific (and other) model representations (e.g. Oberkampf 
et al. 2004; Kiureghian and Ditlevsen 2009; Roy and Oberkampf 2011), that is added on top 
of the aleatory uncertainties that also investors are facing when it comes to the longer-term 
effects of their investment decisions.6  A last point, that has in fact already been made in Fig. 
1, is the multiplicity of decision makers at different levels from local to international. Above 
the national level (and sometimes even below), there is no clear political hierarchy of decision 
making. This is reflected in the concept of “multi-level governance” developed in political sci-
ence (e.g. Liesbet and Gary 2003; Bache and Flinders 2004).

Regarding the implications of these observations, we first state that there is no comprehen-
sive review available that provides a concise overview on the way uncertainties may be handled 
when it comes to political and regulatory decision support. This is probably reflective of the 
broad range of methods and models that is applied for energy and climate policy decision 
support. Even as far as the focus is limited on optimization models, the question is only partly 
addressed. (Pfenninger et al. 2014) in their widely cited overview paper are rather focusing on 
challenges for modelling energy systems than energy policies and they consider uncertainties 
along with a perceived lack of transparency regarding energy system model formulations and 
input data. This call for open-source model and open data has been answered since then with 
numerous open data and open model initiatives emerging, yet this does not per se solve the 
issue on how to cope with uncertainties. And also, the link between model results and actual 
policy decision making remains as challenging as before with open data and open models.

In another somewhat earlier paper, Bazmi and Zahedi (2011) are very optimistic regarding 
the potential of optimization models to support energy planning and energy policy making. To 
fully capture their potential, they call for a holistic, system-based approach that among others 
should also include an “optimization under uncertainty strategy”, yet they are not more spe-
cific on this. On the other hand, there has also been a strand of literature rather critical about 

6. It is worth noting that the distinction of epistemic and aleatory uncertainty is most frequently used when risks in predomi-
nantly physical and technical systems are analysed (cf. the context and application examples of the references cited). In social and 
economic systems, there is a further relevant aspect: the interference between objects and subjects of the analysis – human beings 
(may) react to results published on human behavior. A well-known example in finance is the so-called “Monday effect” on stock 
market returns. It disappeared on major stock markets after having been observed (cf. e.g. French 1980; Cho et. al. 2007; Doyle 
and Chen 2009).
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optimizing energy system models with regard to their contribution to the energy transition, 
including among others Trutnevyte (2016). She argues that optimizing energy system models 
are not good in foreseeing actual developments and illustrates this with an ex-post analysis of 
the UK energy transition.

This paper is embedded in a research stream that explicitly considers multiple possible 
outcomes in energy system models. A key paper hereby is DeCarolis (2011) that introduces the 
“modeling to generate alternatives” (MGA) approach to optimizing energy system models. The 
MGA approach itself has been developed and applied to problems in land and water manage-
ment from the 1980ies onwards, cf. Brill et al. (1982). It consists in searching for near-optimal 
solutions, i.e., solutions that exceed the best (cost-minimizing) objective function value only 
by a prespecified gap, but where the decision variables (primal variables) are as different as pos-
sible from the original optimum. Hence different possible outcomes are identified that all meet 
a certain “close-to-optimality” criterion.7  This approach is also used e.g. in Li and Trutnevyte 
(2017) where it is combined with Monte Carlo simulations to additionally cope with paramet-
ric uncertainty. DeCarolis et al. (2017) build on this research stream and provide a best-prac-
tice guide to energy system optimization which among others also covers various ways to deal 
with uncertainties including scenarios, sensitivity analyses, stochastic optimization, and MGA.

We subsequently focus on two core dimensions regarding the treatment of uncertainties 
in models for political decision support: 1) the use of scenarios (and related to that sensitivity 
analyses) and 2) the use of linear optimization models in particular and optimization models 
in general. Obviously, other methods like computable general equilibrium models may also 
be used to support political decision making - and some of the subsequent reflections also 
apply to these models. Yet for a concise presentation and discussion, we focus on optimization 
approaches. For similar reasons, we mostly leave aside considerations on procedural and com-
munication aspects, although they are also of considerable relevance.

3.3.1 Use of scenarios and sensitivity analyses

As in the case of investment decisions and even more so, the added value of stochastic 
or robust optimization has to be scrutinized given the limited empirical support for not only 
probabilities but also ranges of possible outcomes. Consequently, and in view of keeping the 
multitude of potentially uncertain factors tractable, the scenario approach has been and con-
tinues to be the most frequently used approach to reflect uncertainties.

One important point for truly descriptive scenarios in the policy realm is that the choice 
of scenario drivers depends on the political decision level: everything that is truly exogenous 
to the decisions under study may be included as scenario driver. On the other hand, all factors 
that may be influenced by the political decision makers themselves should not be treated as ex-
ogenous. E.g., the choice of carbon budgets (or alternatively carbon prices) may be considered 
as exogenous when dealing with German energy policy decisions, but it is part of the policy 
choices when it comes to European-level decision making.

Yet another issue is relevant in the context of political decision-making and the multiple 
stakeholders involved therein: Even if everyone agrees that scenarios are intended to inform 

7. The MGA approach has some similarities to the information gap decision theory (IGDT) approach discussed in section 
3.1.5. Yet the IGDT aims at providing bounds on allowable parameter uncertainty for a certain objective function gap, i.e. it is 
interested in bounds on some type of aleatory uncertainty. The MGA approach rather focuses on structural uncertainty, which 
may be seen as a type of epistemic uncertainty, by considering given parameter values and looking how far solutions may be 
pushed away from the original optimum.
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decision makers and to enlighten decisions, there are two competing views on this enlighten-
ment:1) an idealistic concept of enlightenment and 2) a partisan concept of enlightenment. 

The idealistic concept of enlightenment is rooted in the normative decision theory as 
taught in undergraduate business courses and reflected in textbooks like Peterson (2009) or 
Bamberg et al. (2019). Scenarios serve here to elucidate uncertain, possible future states of the 
world. They are exploratory by nature, although ideally the set of scenarios considered reflects 
the key uncertainties driving the system outcomes (as e.g. intended in Spiecker and Weber 
2014). And based on the analysis of these scenarios and the consequences of alternative choices 
therein, decision makers are expected to make rational, well-founded decisions that serve best 
the common good (or welfare for mainstream economists). The underlying, idealistic credo of 
the scenario developers may be characterized as “let us contribute to the rising of the sun of 
knowledge”. 

In the partisan concept of enlightenment, the credo sounds similar at first audition: “let us 
carry the torch of knowledge to shed light on the good cause.” Yet the twist is different here: the 
scenario developers use them to disseminate knowledge and to convince other people instead 
of seeing the scenarios as instrument to discover knowledge. 

First empirical analyses suggest that experts indeed make a distinction between these two 
types of scenario usages: the majority of the surveyed experts supports the statement that sce-
narios are used inside their own institution predominantly to gain insights, i.e., to discover 
knowledge along the lines of the first concept. For multi-stakeholder interactions in the policy 
debate, the same experts preponderantly agree to the statement that scenarios are used accord-
ing to the partisan concept of enlightenment, i.e. to support the own vision of the future.8  
Put differently: scenarios and the results of corresponding model runs are used to support a 
certain “framing” (cf. Tversky and Kahneman 1981; Chong and Druckman 2007) for energy 
decisions (cf. Bickerstaff et al. 2008; Wolsink 2020).

As applied energy analyses frequently are intended to support the policy debate, this am-
biguity in scenario construction and usage is almost inevitable. It is yet already helpful if it is 
reflected in scientific publications on the subject.

An alternative or rather a complement to scenario-based analysis for decision support are 
sensitivity analyses. While scenarios reflect future world views and encompass complementary 
assumptions on multiple parameters, sensitivity analyses rather focus on the variation of single 
parameters (cf. Refsgaard et al. 2007; Spiecker and Weber 2014). This enables a detailed assess-
ment of input assumption variations on scenario outcomes. In a simple energy system model 
for 2050, Droste-Franke et al. (2015) report that the installed PV capacities increase by almost 
100 % when PV costs are modified by merely 20 %. Similar findings are described by Lopion 
et al. (2019) for offshore wind energy. 

Sensitivity analyses may be particularly relevant in the case of epistemic uncertainty, nota-
bly regarding the future behavior of humans in the presence of (rather) new technologies. E. g. 
the adoption of electric vehicles by customers is still difficult to predict given the limited ob-
servations available and the continuous change, the technology is undergoing. It is even more 
difficult to assess the diffusion of vehicle-to-grid concepts. The previously discussed MGA 
approach provides a systematic way to identify such potential variations.

8. Results of a survey held among participants from industry and academia on July 13, 2018 in the context of the project LKD-
EU with about 70 participants. Details on the survey are available from the authors on request.
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3.3.2 Use of linear (and other) optimization programs

The results reported at the end of the previous section pinpoint at a key issue with linear 
optimization models applied to energy policy decision making, namely so-called penny-switch-
ing: If two alternative technologies differ by only one cent or one penny in their cost, the linear 
program will always choose the slightly cheaper technology for a market share of 100 %. This 
certainly is a rational choice for a single decision maker with abundant knowledge and a single 
objective of cost minimization. But when it comes to modelling the energy system several 
decades ahead, this is unlikely and misleading. Notably for distributed technologies like PV 
panels, electric vehicles, heat pumps, building retrofit or even wind turbines, there are mul-
tiple decision makers with at least partly diverging preferences as well as heterogenous siting 
and financing conditions. Modelling the corresponding decisions using a linear optimization 
program with a single objective function and a limited number of technology classes does not 
reflect the heterogeneity of investors and investment opportunities and thus is likely to under-
estimate the diversity of future technology choices.

Kallabis et al. (2016) propose a piecewise linear function for the marginal costs of an 
ensemble of (conventional) generators. This corresponds to the formulation of a quadratic 
optimization problem and allows to describe the heterogeneity of conventional units regarding 
their efficiency in a parsimonious short-term model of the German electricity market. Lopion 
et al. (2019) present an energy system model with a quadratic cost term for investment costs 
and show that this leads to a broader technology mix while reducing at the same time the 
sensitivity of results with respect to changes in the (medium) cost estimate for a technology.9  

These findings suggest that the outcomes of linear programs have to be considered with 
prudence when it comes to modelling the future optimal mix of generation and application 
technologies. Quadratic approaches deserve here further and more detailed investigations as 
well as iterative model couplings between linear optimization models for subsectors (e.g. power 
generation) with discrete choice models (cf. McFadden 1973; Hensher et. al. 2005) applied 
to energy related choices (e.g. Dubin and McFadden 1984; Weber 1999; Banfi et al. 2008; 
Hackbarth and Madlener 2013).

Given the aforementioned caveats, the use of linear programs may provide relevant in-
sights to support political and regulatory decision making. Yet the results should not be taken 
at their face value. Rather they have to be complemented by reflections on the heterogeneity 
of decision makers and decision contexts and on the uncertainty of cause-effect relationships 
for policy instruments. 

As the development of modern solvers enables also quadratic programming problems to 
be solved efficiently, this may be a way forward beyond linear optimization problems. Notably 
this may allow to address parametric uncertainty e.g., in efficiencies or investment cost. Also, 
other convex optimization formulations may be scrutinized to cope with the heterogeneity of 
technologies, sites, and decision makers in future rather distributed energy systems.

f  4. CONCLUSION  g

After several decades of research both on the decarbonization of energy systems and on the 
appropriate modelling of uncertainties in the context of decision support models, there is obvi-

9. Note that in optimal power flow models, quadratic cost functions for single generators are frequently used (cf. Momoh et. 
al. 1999; Zimmerman et. al. 2011)
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ously not one silver bullet nor one single solution that fits all problems. The long-time horizon 
for the system transformation together with the multiplicity of involved investors and policy 
makers gives rise to multiple uncertainties and makes decision support in the field challenging. 

A first step to cope with uncertainties is certainly to identify and assess them thoroughly. 
This may be done outside any optimization model used for decision support, by enumerating 
possible sources of uncertainty and estimating their range. By varying then parameters in the 
optimization model, the sensitivity of the reference model results with respect to changes in 
the assumptions may be identified. 

Another standard approach to address uncertainties is to identify scenarios and compute 
the corresponding model outcomes. Compared to multiple sensitivity analyses, the computa-
tional burden is certainly lower, and the gathered insights may be connected to the scenario 
storylines underpinning the scenarios. On the other hand, the aggregation of uncertainties 
into a limited number of scenarios may induce a considerable loss in information.

Stochastic and robust optimization as well as chance-constrained programming are math-
ematically demanding approaches. These are generally more appropriately applied in opera-
tional planning where more empirical evidence on the uncertain parameters is available. 

Like sensitivity analysis, the modeling to generate alternatives (MGA) approach is a com-
putationally demanding approach for large optimizing energy models. Yet it enables not only 
insights into the impact of changes in single parameters but also on the bandwidth of potential 
solutions that are “within reach” of the computed optimum for a certain tolerated gap in the 
objective function.

A particular challenge to modelling is the intertwined decision making in a multi-level 
governance setting. Further research efforts may be devoted to developing transparent mod-
elling approaches that enable an in-depth analysis of the interdependencies without imposing 
strong theoretical priors like in Nash equilibria. Dealing with decisions of other institutions 
as part of the structural uncertainties may be a way forward to identify “robust” or rather er-
ror-tolerant strategies for decarbonization in a multipolar setting.
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