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Overview

There is an intense need for a sustainable way of powering our modern life reliably and securely. In the case of electricity system, renewable energy based power generations bring about great intermittence to the system in the supply side. Energy storage system is then an important technology in permitting the reliability and security of electricity system.
There is no doubt that the main contributor to market success is still cost. (Matteson &  Williams, 2015) In addition to the former questions, another one should be taken into consideration that “How cheap should batteries be to meet the demand of the society or to get successful in the market?” To be specific, the energy storage market is currently a burgeoning one, with continuing introduction of new technologies, improvements and applications. It is predicted that the global market for grid used energy storage could rise from $200 million to above $10 billion in 2017 (Warshay, 2013). While more efficient energy storage technologies, such like lithium batteries, flywheel system, compressed air technology etc., are under development. The dominant energy storage system now is still lead-acid batteries due to its low cost. 
Lead-acid battery is currently the most widely used electricity storage system in the world of batteries (Haas and Cairns, 1999; Linden, 2010). Its high reliability and low cost have made itself more competitive than other energy storage systems in the market (Huggins and Robert, 2010). Compared to other batteries, lead-acid battery remains one of the cheapest options for popular application units. The relative cost between lead-acid batteries and emerging energy storage systems is an important factor in determining which technology will succeed in the market. To surpass the lead-acid battery in the market, an emerging technology must offer an order of magnitude improvement in cost (Burr and Pearne, 2013). 
Learning curve is a widely used tool to predict the future success of an emerging energy storage system by comparing its cost with lead-acid battery as a benchmark. Typically, it is usually assumed that the effect of experience learning in lead-acid batteries has finished. Then researchers usually use a static value of current lead-acid price as a benchmark in analyzing the price-point goal for emerging energy storage technologies (Bayunov et al., 2010; DOE 2013; Gyuk et al., 2013; Haas and Cairns, 1999; Howell, 2012). However, it is argued by Matteson & Williams (2015) that the competitive price point for emerging technologies should be a moving target instead of a static one if lead-acid battery prices can be expected to fall in the future. A moving target would have an important influence on the market. For a venture firm which is developing an alternative storage technology, this could imply investing higher capital and time to reach cost parity to beat a future reduced cost for lead-acid batteries. Ignorance of this continuing reduce of lead-acid batteries costs, firms that are trying pushing their advanced storage technologies into the market would face great barriers.
Learning curve is a concept model used to predict a technology’s future cost based on analysis of historical production data. Since its development by Wright (1936) in airplane manufacturing, it has been widely used and improved in many areas (Levy, 1965; Jaber & Guiffrida, 2004; Gopal et al., 2013; etc.), including energy sector. McDonald & Schrattenholzer (2001) assembled data on experience accumulation and cost reductions for several energy technologies and estimated learning rates for energy models to choose. Junginger et al. (2005) composed a global experience curve to analyze global wind energy price development. Nemet (2006) applied learning curves in analyzing the dramatic cost decline of photovoltaic (PV). The author also used theoretical mechanism to explain learning curves of PV, considering factors such like plant size, module efficiency, as well as silicon cost. A broader set of influences, for instance, technical barriers, industry structure, and characteristics of demand are also taken into consideration by him. 
Utilizing learning curves to predict the future cost of lead-acid batteries should also be done cautiously. In literature, it has been realized that learning curve models may omit some important effects from other factors out of production progresses. For instance, changing prices of the input resources may affect the results of prediction radically (Weiss et al., 2010; Ferioli et al., 2009). 
There are four further sections in this paper. In section 2, the methodology, some assumptions, and necessary data are presented in details. Section 3 shows the results calculated through the method described in section 2, including the residual learning rates under different scenarios. A further discussion on the influences from different materials learning rates and application of the model is given in section 4. Section 5 concludes the whole paper briefly.
Methods

In order to remove the effects of the changing prices, Matteson & Williams (2015) decompose the total cost of lead-acid batteries into materials cost and residual cost, the former part is changed annually due to the fluctuation of materials’ prices; the authors then compose an experience curve for residual cost and increased the precision of forecasting. According to the authors, the R2 values of total cost experience curves are only 0.17 for small lead-acid batteries and 0.05 for large batteries. The R2 values of residual cost experience curves for the lead-acid batteries are about 0.78 for small batteries and 0.74 for large batteries, both increased above 35%. However, in that study, the authors assumed that the material content of a lead-acid battery is constant in the studied periods and in the future. What’s more, in the analysis of the development potential of lead-acid batteries, it is believed that the potential of cost reduction for lead-acid batteries is due to the improvement of energy intensity, which conflicts with the assumption proposed in that paper. 
In this paper, on the basis of Matteson & Williams’ (2015) work, further disaggregation is composed to remove the influence of changing materials prices, which, instead of assuming the constant materials consumption, thinks about the decline of quantity of materials consumed in the production due to the experience and technology learning.
Results

According to the research, we have divided the research sample into three period to study the experience learning in materials consumed during the lead-acid batteries production.
The residual cost of lead-acid batteries is depicted by a learning curve model. The total battery cost minus the materials costs and we could then get the residual cost of lead-acid batteries. In accordance with the three different scenarios described in the former section, we could get three different learning curves for the residual costs. The results are shown in table 3. 
Table 3. Residual cost learning curves for lead-acid batteries under different scenarios
	
	Scenario 1 (LRM=8%)
	Scenario 2 (LRM=10%)
	Scenario 3 (LRM=12%)

	1985-1994
	R2
	0.8525
	0.8563
	0.8609

	
	LRR
	0.104528141
	0.105247856
	0.105991781

	
	a
	0.15928
	0.16044
	0.16164

	1995-2007
	R2
	0.9163

	
	LRR
	0.187673846

	
	a
	0.299869

	2008-2014
	R2
	0.4211
	0.43
	0.439

	
	LRR
	
	-0.224896626
	

	
	a
	-0.3345
	-0.29266
	-0.2810


Conclusions

The materials contained in lead-acid batteries could be reduced due to the energy density’s increase. The variation of materials costs is ascribed to the materials reduction as well as the fluctuation of materials prices. To simplify the problem, we presume that the materials quantities are constant in the short time but reduced in the long run. Based on this assumption, we then divided the time studied into three periods so that the difference of materials quantities consumed in different periods could be compared. The results suggest that the materials in the first period, between 1985 and 1994, the lead contained in the batteries seems to be more than 20kg/kWh, showing a learning rate more than 10%. In the third period, this would be less than 17.5kg/kWh (the quantity of lead contained in the batteries during the second period), suggesting that the learning rate of materials is still large than zero. We also compare the learning rate for residual cost in these three periods and find that the learning rate for residual cost lies in the range between 13.63% and 18.76%.
