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Appendix A: Recent trends in international oil and gas industry 

Global oil markets have been experiencing a period of extraordinary changes in the recent 

years which can mainly be attributed to (i) the imposition of sanctions and crude oil 

production restraint on key producing countries (for example, Iran and Venezuela) and (ii) oil 

demand growth shifting towards Asia. These changes are expected to have profound impact 

on international trade and other asset markets. With regard to oil supply growth, in 2018, total 

liquid production increased by 2.2 million barrel per day (mb/d) (IEA, 2019a). While the US 

is the major contributor (about 70%) to this growth, other important suppliers are Brazil, 

Canada, Norway and Guyana. As a consequence of its shale revolution, the US is a dominant 

oil exporter and it will become a net oil exporter in 2021. This change has important 

implications. The crude oil importers (particularly in Asia) now have greater choice of 

suppliers that leads to higher operational and trading flexibility, and reduced dependence on 

oil-rich Middle Eastern countries. This phenomenon ultimately brings greater oil security 

around the world. Although oil demand has been growing in recent years, the growth was 

harmed due to weak economic outlook in many countries, continuing trade disagreement 

between the US and China, and disorderly Brexit. Nonetheless, the oil demand growth is 

underpinned by increased oil demand in developing countries, particularly in China and 

India. About 44% (7.1 mb/d) of the global demand growth is expected to be accounted by 

these two countries. Increase in oil demand is also coming from increased demand for 

plastics and petrochemicals. These two sectors contribute to about 30% of the global oil 

demand growth. Another major contributor to oil demand growth is the expansion in the 

aviation sector. 

The demand for natural gas increased by 4.6% in 2018 and this rate is the highest 

since 2010. About 45% of the total increase in global energy consumption is accounted by 

natural gas (IEA, 2019b). The increase in demand mainly comes from the USA and China 



3 
 

due to their economic growth, a move from coal to gas and high weather-related energy 

needs. Other contributors to this growth are Middle Eastern and North African countries. The 

Chinese government’s goal to improve air quality, and Middle Eastern and North African 

countries’ abundant domestic resources are encouraging the use of natural gas in industrial 

application. Nonetheless, this growth is not expected to sustain in future as power generation 

is the main use of natural gas which is facing increased competition from renewable energy. 

With regard to supply growth, the USA is the largest supplier that experienced a 11.5% 

growth in gas production in 2018. This growth is primarily attributable to wet and dry shale 

gas resources. Other major gas suppliers are China, Australia, Russia, and Iran. While the 

global gas trade is largely driven by liquefied natural gas (LNG), larger investment in this 

sector is necessary to avoid shrinking capacity margin. While difference in regional 

(particularly between Asia and Europe) prices was a main characteristic of the global gas 

market, this difference has decreased sharply towards the end of 2018. This change can be 

attributed to well-supplied markets and the expansion of LNG trade. Further, several 

governments (for example China, India and Pakistan) have revised prices in domestic market 

for a greater convergence to the global gas market. 

The major regulatory challenge faced by the global energy sector is the 2020 

International Maritime Organization (IMO) regulation change. IMO takes a strategy to reduce 

carbon emission by at least 50% by 2050. This regulation can have a far-reaching impact on 

the energy sector as energy shipping and refining industries have to comply with certain 

standard. It is expected that some non-compliance in the initial stage will make the market 

tight.  

Apart from the regulatory challenge, the fundamental challenge of the energy sector 

is its intrinsic volatility. The oil and gas producers need to develop a resilient strategy to face 

major uncertainties associated with (i) an over- or under-supplied market, and (ii) 
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transformation from fossil fuels to renewable energy sources. Oil and gas companies 

typically focus on maintaining a lower break-even price, having adequate capital and 

innovation of new technologies to face these uncertainties. For instance, Shell has divested its 

oil sand business in Athabasca in May 2017, and in 2018, BP has announced that new project 

will be approved only if it is profitable at less than $40 per barrel. Both of these examples 

aim to reduce break-even prices. Overall, the world will continue to depend on oil and gas, 

and demand, supply and resulting price volatility is likely to persist in the market. Therefore, 

operators and investors in the oil and gas market need plan of action particularly with regard 

to portfolio resilience, innovation and capital efficiency. 
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Appendix B: Time varying optimal copula (TVOC) modelling 
 
The optimal copula (OC) modelling involves five algorithmic steps: 

 
Step 1: We use a two-step semiparametric method namely the canonical maximum likelihood 

method to estimate copula parameters (Cherubini et al., 2004; Aloui et al., 2013). Since the 

presence of conditional heteroskedasticity is a common feature of financial returns, we use 

the following VARX-GARCH (1, 1) model with skewed-t distribution to filter the return 

series and derive standardized residuals.  

 rt = μt + εt                                                                     (A.1)       

μt = C0 + C1μt−1 + A0xt                                                           (A.2)                                                                        

σt2 = ω + αεt−12 + βσt−12                                                  (A.3) 

where rt denotes the log return of high-yield (HY) or investment grade (IG) bond index at 

time t. The mean equation μt is modeled by the vector autoregression process with exogenous 

variables: oil and gas returns. Note that the GARCH parameters take non-negative values 

(ω > 0, α ≥ 0, β ≥ 0) in order to guarantee the positivity of σt2. The skewed-t distribution is 

used as the energy and bond return series exhibit fat-tails and skewed behavior (see Table 1).1 

Uddin et al. (2018) argue that skewed-t distribution is particularly suitable for modelling 

return distributions with fat tails.2 The marginal distribution is estimated based on the 

empirical distribution function of corresponding standardized residuals as 

 F�ϵi (ε) =  1
T+1

∑ I(ε�i,t≤ε)
T
t=1                         (A.4) 

 
1 Following Hansen (1994), skewed-t’s density distribution can be defined as: 

 𝑓𝑓�𝑧𝑧𝑡𝑡,𝑣𝑣, 𝜂𝜂� =

⎩
⎨

⎧𝑏𝑏𝑏𝑏 �1 + 1
𝑣𝑣−2

 �𝑏𝑏𝑧𝑧𝑡𝑡+𝑎𝑎
1−𝜂𝜂

�
2
�
−(𝑣𝑣+1)/2

, 𝑧𝑧𝑡𝑡 < −𝑎𝑎/𝑏𝑏

𝑏𝑏𝑏𝑏 �1 + 1
𝑣𝑣−2

 �𝑏𝑏𝑧𝑧𝑡𝑡+𝑎𝑎
1−𝜂𝜂

�
2
�
−(𝑣𝑣+1)/2

, 𝑧𝑧𝑡𝑡 ≥ −𝑎𝑎/𝑏𝑏
  

where, 𝑣𝑣  is the degree of freedom parameters (2 < v < ∞) and 𝜂𝜂 is the symmetric parameter (-1 < 𝜂𝜂 < 1). The 

constants a, b, and c are 𝑎𝑎 = 4𝜂𝜂𝜂𝜂 �𝑣𝑣−2
𝑣𝑣−1

�, 𝑏𝑏2 = 1 − 3𝜂𝜂 −  𝑎𝑎2 , and 𝑐𝑐 =
Γ�𝑣𝑣+12 �

�𝜋𝜋 (𝑣𝑣−2)
Γ �𝑣𝑣

2
� 

 
2 The best marginal model is selected, firstly by considering different combinations of the lag parameters, and 
secondly, by choosing the optimal lag structure of the parameters based on the minimum value of Akaike 
Information Criterion (AIC).  
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where I(.) is an indicator function which takes a value of 1 if ε�i,t ≤ ε, and 0, if otherwise. 

Through estimating the marginal distribution, the return series �ri,t�t=1
T

is transformed in to 

uniform (0,1) distribution series �F�εi(ε�i,t)�t=1
T

 and copula parameter θ is estimated via 

maximum pseudo-likelihood in the following manner: 

θ�i,j = argmaxθ ∑ lnCij (T
t=1  F�εX�ε�X,t�, F�εY�ε�Y,t�;  θ)                     (A.5) 

where i and j respectively include the original and rotated copula functions. The details of 

copula functions and their specifications are provided in Appendix Table A.1. 

Step 2: Since dependence across markets can be complex and non-linear (positive 

dependence and negative dependence), Kendall’s τ is used to measure the direction and 

intensity of the relationship. Covariance based correlation is not preserved by copula whereas 

Kendall’s τ is a constant of the copula. That is, any correlated variates with the same copula 

will have the τ of that copula. In this step, Kendall’s τ is computed for the subsample of time 

point t and it is denoted by τt. This step enables to measure the cross-market nonlinear and 

asymmetric negative dependence using proper copulas.3 

Step 3: In order to select OC for the bond and energy returns, we need to first ascertain their 

dependence relationship by statistical inference. To this vein, we test the following 

hypotheses: 

Hypothesis 1: Null hypothesis H0 : τ = 0; Alternate hypothesis H1 : τ < 0. This hypothesis 

involves one-sided lower tail dependence. 
 

3 In the case of random variables X and Y with copula C, Kendall’s τ is estimated as: 
 𝜏𝜏�𝜃𝜃�� = 4∫ ∫ 𝐶𝐶�𝑢𝑢, 𝑣𝑣; 𝜃𝜃��𝑑𝑑𝑑𝑑�𝑢𝑢, 𝑣𝑣;𝜃𝜃�� − 11

0
1
0 . In simple word 𝜏𝜏�𝜃𝜃�� = 4E[C(u, v)] − 1 where E[] is the expectation 

operator, which is the key, and the 4 and -1 are simply for interpretation purposes. 
In the presence of the second order mixed partial derivative of the copula, 𝐶𝐶�𝑢𝑢, 𝑣𝑣; 𝜃𝜃��, and  
𝑑𝑑𝑑𝑑�𝑢𝑢, 𝑣𝑣; 𝜃𝜃�� = 𝑐𝑐�𝑢𝑢, 𝑣𝑣; 𝜃𝜃��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, Kendall’s τ is  

𝜏𝜏�𝜃𝜃�� = 4� � 𝐶𝐶�𝑢𝑢, 𝑣𝑣; 𝜃𝜃��𝑐𝑐�𝑢𝑢, 𝑣𝑣; 𝜃𝜃��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 1
1

0

1

0
 

If Clayton characterizes the copula-dependence structure, then 𝜏𝜏�𝜃𝜃�� = 𝜃𝜃�

𝜃𝜃�+2
,𝜃𝜃�  ∈ (0,∞) while if Gumbel 

characterizes the copula-dependence structure, then 𝜏𝜏�𝜃𝜃�� =  𝜃𝜃
�−1
𝜃𝜃�

,𝜃𝜃�  ∈ (1,∞) 
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Hypothesis 2: Null hypothesis H0 : τ = 0; Alternate hypothesis H1 : τ > 0. This hypothesis 

involves one-sided upper tail dependence. 

Given the significance level α, if 𝐾𝐾∗ < −uα, it indicates a significant negative dependence 

between the two series and the rejection of hypothesis 1.4 In such case, the OC of time point t 

is selected from the copula family {Normal, t, R1 Clayton, R2 Clayton,  R1 Gumbel, R2 

Gumbel} on the basis of a comparison of their log-likelihood values; otherwise, we move to 

step 4. 

Step 4: If 𝐾𝐾∗ > uα, it is indicative of a significant positive dependence between the series and 

the rejection of hypothesis 2. In this case, the OC of time point t is selected from the copula 

family {Normal, t, Clayton, Gumbel, R Clayton, R Gumbel}; otherwise, we move to step 5. 

Step 5: If the observations are found to be statistically independent and we fail to reject any 

of the hypothesis, the OC of time point t is selected from the copula family {Normal, t, 

Clayton, Gumbel, R Clayton, R Gumbel, R1 Clayton, R1 Gumbel, R2 Clayton, R2 Gumbel}.5 

 

 

  

 
4 The test statistic is 𝐾𝐾∗  =  𝐾𝐾−𝐸𝐸0 (𝐾𝐾)

�𝑉𝑉𝑉𝑉𝑉𝑉0 (𝐾𝐾)
=  𝐾𝐾

�𝑉𝑉𝑉𝑉𝑉𝑉0 (𝐾𝐾)
=  

�𝑛𝑛2�.𝜏𝜏�

(𝑛𝑛(𝑛𝑛−1)(2𝑛𝑛+5)/18)1/2  
𝑑𝑑
→ 𝑁𝑁(0,1)  (Hollander & Wolfe, 1973). 

 
5 R represents the original bivariate copula density function (either Clayton or Gumbel) rotating 180 degrees 
through symmetric axis of �𝑢𝑢 = 0.5

𝑣𝑣 = 0.5. R1 and R2 respectively represents the original bivariate copula density 
function (either Clayton or Gumbel) accomplishing mirrored transformation through the symmetric plane of u = 
0.5 and v = 0.5. So, R, R1 and R2 respectively indicate bivariate copula density function rotating 180, 90, and 270 
degrees. 
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Table A.1 Copula functions 

Copula name Formula Parameter Distribution Dependence Tail Dependence 
Normal 𝐶𝐶𝑁𝑁(𝑢𝑢, 𝑣𝑣,𝜌𝜌) =  𝜃𝜃(𝜃𝜃−1(𝑢𝑢),𝜃𝜃−1 (𝑣𝑣))  

 
 

𝜌𝜌 ∈ [−1 1] 
 

Symmetric P.D/ N.D  No 

Student-t 
 

𝐶𝐶𝑆𝑆𝑆𝑆(𝑢𝑢, 𝑣𝑣,𝜌𝜌,𝜋𝜋) =  𝑇𝑇(𝑡𝑡𝜋𝜋−1(𝑢𝑢), 𝑡𝑡𝜋𝜋−1 (𝑣𝑣))  
 
 
 
 

𝜌𝜌 ∈ [−1 1] 
 
 
 
 

Symmetric P.D/ N.D All 
 

Clayton 
 

𝐶𝐶𝐶𝐶(𝑢𝑢, 𝑣𝑣: 𝜃𝜃) =  𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑢𝑢−𝜃𝜃 + 𝑣𝑣−𝜃𝜃 − 1�−1/𝜃𝜃 , 0�  
 
 

𝜃𝜃 ∈ [−1,∞)\{0}] 
 
 

Asymmetric P.D Lower – Lower  
 

R1 (900 Rotated) Clayton 
𝐶𝐶𝑅𝑅1𝐶𝐶(𝑢𝑢, 𝑣𝑣: 𝜃𝜃) =  𝑣𝑣 −  �(1 − 𝑢𝑢)−𝜃𝜃 +  𝑣𝑣−𝜃𝜃 − 1�−

1
𝜃𝜃 

𝜃𝜃 ∈ [−1,∞)\{0}] 
 

Asymmetric N.D Upper – Lower  

R (1800 Rotated) Clayton 
 

𝐶𝐶𝑅𝑅𝑅𝑅(𝑢𝑢, 𝑣𝑣: 𝜃𝜃) =  𝑢𝑢 + 𝑣𝑣 − 1 + 𝐶𝐶𝐶𝐶(1 − 𝑢𝑢, 1 − 𝑣𝑣; 𝜃𝜃)  
 
 

𝜃𝜃 ∈ [−1,∞)\{0}] 
 
 

Asymmetric P.D Upper – Upper  

R2 (2700 Rotated) Clayton 
𝐶𝐶𝑅𝑅2𝐶𝐶(𝑢𝑢, 𝑣𝑣: 𝜃𝜃) =  𝑢𝑢 −  �𝑢𝑢−𝜃𝜃 + (1 − 𝑣𝑣)−𝜃𝜃 − 1�−

1
𝜃𝜃 

𝜃𝜃 ∈ [−1,∞)\{0}] 
 

Asymmetric N.D Lower – Upper  

Gumbel 𝐶𝐶𝐺𝐺(𝑢𝑢, 𝑣𝑣: 𝜃𝜃) =  𝑒𝑒𝑒𝑒𝑒𝑒(−((− 𝑙𝑙𝑙𝑙𝑙𝑙 𝑢𝑢)𝜃𝜃 + (− 𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣)𝜃𝜃)1/𝜃𝜃  
 
 
 

𝜃𝜃 ∈ [1,∞) 
 
 
 

Asymmetric P.D Upper – Upper  

R1 (900 Rotated) Gumbel 𝐶𝐶𝑅𝑅𝑅𝑅(𝑢𝑢, 𝑣𝑣: 𝜃𝜃) =  𝑣𝑣 − 𝐶𝐶𝐺𝐺(1 − 𝑢𝑢, 𝑣𝑣; 𝜃𝜃)  
 

𝜃𝜃 ∈ [1,∞) 
 
 
 

Asymmetric N.D Lower – Upper  

R (1800 Rotated) Gumbel 
 

𝐶𝐶𝑅𝑅𝑅𝑅(𝑢𝑢, 𝑣𝑣: 𝜃𝜃) =  𝑢𝑢 + 𝑣𝑣 − 1 + 𝐶𝐶𝐺𝐺(1 − 𝑢𝑢, 1 − 𝑣𝑣; 𝜃𝜃)  
 
 

𝜃𝜃 ∈ [1,∞) 
 
 
 

Asymmetric P.D Lower – Lower  
 

R2 (2700 Rotated) 
Gumbel 

𝐶𝐶𝑅𝑅𝑅𝑅(𝑢𝑢, 𝑣𝑣: 𝜃𝜃) =  𝑢𝑢 − 𝐶𝐶𝐺𝐺(𝑢𝑢, 1 − 𝑣𝑣; 𝜃𝜃)  
 

𝜃𝜃 ∈ [1,∞) 
 
 
 

Asymmetric N.D Upper – Lower  

Notes: P.D and N.D are positive average dependence and negative average dependence. In the case of normal copula, 𝜃𝜃−1(𝑢𝑢) and 𝜃𝜃−1 (𝑣𝑣) represent standard normal quantile 
functions, 𝜃𝜃 denotes bivariate standard normal cumulative distribution function, 𝜌𝜌 is the correlation between the functions. With regard to student-t copula, 𝑡𝑡𝜋𝜋−1(𝑢𝑢)  and 
𝑡𝑡𝜋𝜋−1 (𝑣𝑣) indicate quantile functions of the univariate student-t distribution, T denotes the bivariate student-t cumulative distribution,  𝑢𝑢  and 𝑣𝑣 are degree-of-freedom 
parameter and 𝜌𝜌 is the correlation between the functions. Bivariate normal copula and student-t copula belong to symmetric copula family. While normal copula does not 
capture tail dependence, student-t copula captures equal lower and upper tail dependence. Asymmetric copula family includes Clayton copula, Rotated Clayton copula, 
Gumbel copula, and Rotated Gumbel copula. Clayton, 1800 Rotated Clayton, Gumbel and 1800 Rotated Gumbel copulas measure asymmetric positive dependence. That is, 
they measure two positive cases when both the bond and energy markets are either bullish or bearish. While Clayton copula and 1800 Rotated Gumbel copula can only 
capture lower tail dependence, Gumbel copula and 1800 Rotated Clayton copula can only capture upper tail dependence. 900 and 2700 Rotated Clayton and 900 and 2700 
Rotated Gumbel copulas capture negative dependence. They capture a lower-upper tail and upper-lower tail dependence. Therefore, they measure two negative cases, when 
one market (such as bond) is bullish and other market (such as energy) is bearish. 
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Table A.2 The log-likelihood values for different copula models 
 

 TVOC TVP-Normal TVP-t Normal Student-t 
S&P HY – Oil  59.15 18.52 19.56 8.65 9.22 
S&P IG – Oil  46.24 5.76 7.99 1.43 3.11 
EN HY – Oil  54.81 10.61 20.06 2.54 1.08 
EN IG – Oil  44.31 8.49 10.54 1.25 9.45 
S&P HY – Gas  38.58 10.71 12.21 3.54 10.01 
S&P IG – Gas 19.51 5.16 19.35 6.24 6.15 
EN HY – Gas 37.29 10.80 21.39 6.76 7.54 
EN IG – Gas 19.22 6.17 9.19 0.88 2.56 
Note: This table compares the log-likelihood values of time-varying optimal copula (TVOC) with time-varying 
parameter (TVP) copulas (TVP-Normal and TVP-t) and non-dynamic or static copulas (Normal and Student-t). 
S&P IG, S&P HY, EN IG, and EN HY respectively indicate daily returns of S&P500 investment grade 
corporate bond index, S&P U.S high-yield corporate bond index, S&P500 investment grade energy corporate 
bond index, and S&P U.S. high-yield energy corporate bond index. Oil and gas respectively represent oil and 
gas futures returns. For assuring comparability, the log-likelihood value of the TVOC model is defined as: 𝐿𝐿 =
∑ 𝑙𝑙𝑡𝑡𝑇𝑇−𝑤𝑤+1
𝑡𝑡=1
𝑇𝑇−𝑤𝑤+1

. 𝑇𝑇
𝑤𝑤

, where 𝑙𝑙𝑡𝑡 is the best-fitting copula log-likelihood value at time point t, w is the length of the rolling 
window and T is the length of the series.  
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Table A.3: Loglikelihood ratios of volatility models with different distribution assumptions 

 
 

𝑹𝑹𝒕𝒕𝑺𝑺&𝑷𝑷 𝑰𝑰𝑰𝑰  𝑹𝑹𝒕𝒕𝑺𝑺&𝑷𝑷 𝑯𝑯𝑯𝑯  𝑹𝑹𝒕𝒕𝑬𝑬𝑬𝑬 𝑰𝑰𝑰𝑰  𝑹𝑹𝒕𝒕𝑬𝑬𝑬𝑬 𝑯𝑯𝑯𝑯 𝑹𝑹𝒕𝒕𝑶𝑶𝑶𝑶𝑶𝑶 𝑹𝑹𝒕𝒕𝑮𝑮𝑮𝑮𝑮𝑮 
GARCH (1,1) NORM -216.50 1546.07 -657.30 705.63 -5515.67 -6504.45 

 SNORM -216.98 1545.85 -657.83 705.46 -5522.89 -6505.13 

 STD -217.80 1534.48 -657.97 688.03 -5532.82 -6505.61 

 SSTD -215.15 1555.37 -650.86 708.83 -5516.37 -6495.45 

 GED -221.26 1543.17 -651.50 705.63 -5522.48 -6506.22 

 SGED -221.76 1543.01 -651.89 705.46 -5514.26 -6506.95 

EGARCH (1,1) NORM -224.47 1540.14 -664.29 700.83 -5518.30 -6508.79 

 SNORM -222.55 1530.16 -662.09 688.02 -5539.58 -6507.37 

 STD -215.91 1555.29 -650.98 708.86 -5515.75 -6496.14 

 SSTD -219.72 1542.92 -660.23 700.83 -6620.03 -7708.66 

 GED -218.89 1553.02 -652.92 704.83 -5511.01 -6497.86 

 SGED -216.62 1543.42 -651.12 691.76 -5530.52 -6497.52 

GJR-GARCH 

(1,1) 

NORM -219.21 1553.11 -654.39 708.35 -5522.78 -6498.87 

 SNORM -219.98 1553.03 -654.48 708.33 -5523.94 -6499.63 

 STD -222.94 1550.78 -656.38 704.30 -5520.06 -6501.12 

 SSTD -220.65 1539.94 -654.65 691.22 -5539.43 -6500.90 

 GED -240.74 1490.09 -682.44 620.47 -5568.24 -6558.56 

 SGED -241.19 1487.14 -684.16 618.55 -5568.60 -6559.05 

APARCH (1,1) NORM -244.42 1481.19 -687.58 609.87 -5558.84 -6564.61 

 SNORM -242.48 1470.56 -684.41 592.24 -5595.36 -6559.17 

 STD -245.74 1485.14 -687.75 619.92 -5582.20 -6567.06 

 SSTD -246.22 1482.76 -688.95 618.09 -5582.20 -6567.75 

 GED -249.40 1476.57 -692.41 609.14 -5573.90 -6572.30 

 SGED -247.48 1462.67 -689.34 590.80 -5610.26 -6567.76 

Note: Bold numbers indicate best-fitted model with the highest loglikelihood values. NORM: Normal 
distribution; SNORM: Skewed normal distribution; STD: Student-t distribution; SSTD: Skewed Student-t 
distribution; GED: Generalized error distribution; SGED: Skewed generalized error distribution. See notes to 
Table A.2 for further details. 
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Table A.4 Conditional coverage Backtesting tests: Downside VaR  
 

S&P IG S&P HY EN IG EN HY Oil Gas 
DB1 6.140 0.521 6.335 1.263 6.529 0.192  

(0.046) (0.771) (0.042) (0.532) (0.038) (0.909) 
DB2 2.492 3.423 2.387 2.890 9.196 0.193  

(0.359) (0.242) (0.198) (0.308) (0.027) (0.979) 
DB3 5.339 3.861 2.175 2.929 9.283 1.609  

(0.340) (0.428) (0.161) (0.629) (0.054) (0.807) 
DB4 5.245 4.002 2.198 3.034 8.962 1.832  

(0.294) (0.513) (0.322) (0.743) (0.111) (0.872) 
DB5 2.516 4.972 3.321 2.331 10.602 0.524  

(0.390) (0.018) (0.298) (0.533) (0.031) (0.971) 
DB6 2.463 4.394 3.024 2.831 13.906 2.397  

(0.290) (0.133) (0.280) (0.802) (0.016) (0.792) 
DB7 6.142 2.154 4.927 3.052 10.538 0.323  

(0.105) (0.541) (0.348) (0.384) (0.015) (0.956) 
DQ1 3.053 4.119 3.773 4.050 0.555 0.219  

(0.217) (0.128) (0.152) (0.132) (0.758) (0.896) 
DQ2 3.660 5.057 4.119 4.835 0.693 0.226  

(0.160) (0.080) (0.128) (0.589) (0.707) (0.893) 
DQ3 8.415 7.858 6.104 5.976 2.446 0.886  

(0.038) (0.049) (0.107) (0.113) (0.485) (0.829) 
DQVaR1 9.046 12.045 6.267 4.442 3.314 1.536  

(0.060) (0.017) (0.180) (0.510) (0.507) (0.820) 
DQVaR2 3.664 5.637 5.465 4.935 4.347 0.361  

(0.300) (0.131) (0.141) (0.740) (0.226) (0.948) 
DQVaR3 8.562 9.013 7.809 7.941 6.444 0.996  

(0.128) (0.109) (0.167) (0.160) (0.265) (0.963) 
LR 9.349 15.111 8.974 11.042 10.851 1.971  

(0.229) (0.035) (0.255) (0.137) (0.145) (0.961) 
Note: The entries are the estimated VaRs and corresponding p-values (in the parentheses). Thirteen conditional 
coverage tests are used. Among the tests, seven are based on the dynamic binary regression model (DB) 
proposed by Dumitrescu et al. (2012) where explanatory variables are lagged VaRs and lagged violations 
specifications; six tests are based on the dynamic quantile tests (DQ) of Engle and Manganelli (2004) that 
include several lags of violations variable and VaR; and one test is the Markov Chain based LR test of 
Christoffersen (1998). See notes to Table A.2 for further details. 
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Table A.5 Conditional coverage Backtesting tests: Upside VaR  
 

S&P IG S&P HY EN IG EN HY Oil Gas 
DB1 0.416 0.997 0.416 7.152 0.104 0.123  

(0.812) (0.607) (0.812) (0.028) (0.949) (0.941) 
DB2 2.184 1.259 8.526 15.505 0.884 4.977  

(0.535) (0.739) (0.036) (0.001) (0.829) (0.173) 
DB3 2.512 4.325 1.868 17.347 3.120 5.102  

(0.642) (0.364) (0.760) (0.002) (0.538) (0.277) 
DB4 5.534 5.215 1.878 17.406 3.797 4.203  

(0.354) (0.390) (0.866) (0.004) (0.579) (0.521) 
DB5 2.218 1.514 10.088 16.058 2.739 5.343  

(0.696) (0.824) (0.039) (0.003) (0.602) (0.254) 
DB6 2.220 1.546 10.280 17.130 2.555 0.909  

(0.818) (0.908) (0.068) (0.004) (0.768) (0.970) 
DB7 0.426 1.272 0.420 9.625 2.049 0.640  

(0.935) (0.736) (0.936) (0.022) (0.562) (0.887) 
DQ1 2.403 1.010 0.641 1.842 0.710 1.340  

(0.301) (0.604) (0.726) (0.398) (0.701) (0.512) 
DQ2 2.156 0.994 0.634 1.611 0.777 1.154  

(0.340) (0.608) (0.728) (0.447) (0.678) (0.561) 
DQ3 2.201 1.107 1.537 4.282 0.909 4.251  

(0.532) (0.775) (0.674) (0.233) (0.823) (0.236) 
DQVaR1 2.267 1.222 1.859 5.059 1.034 4.616  

(0.687) (0.874) (0.762) (0.281) (0.905) (0.329) 
DQVaR2 2.162 1.302 0.635 3.723 2.749 1.711  

(0.539) (0.729) (0.888) (0.293) (0.432) (0.634) 
DQVaR3 2.404 1.458 1.677 6.192 13.583 4.767  

(0.791) (0.918) (0.892) (0.288) (0.018) (0.445) 
LR 4.292 1.580 2.063 7.056 13.874 5.937  

(0.746) (0.979) (0.956) (0.423) (0.053) (0.547) 
Note:  See notes to Table A.2 and Table A.4. 
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Figure A.1 Time trend of bond indices and energy prices  

Panel A: Time trend of bond indices 
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Panel B: Time trend of energy prices  
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Notes: In Panel B, oil and gas futures prices are respectively in the right and left axis. See notes to Table A.2 for 
further details. Source: Authors’ own estimation. 
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Figure A.2 Time varying optimal copula estimates for oil and bond returns 

Panel A: Time varying optimal copula estimates for the oil and EN HY returns 

a). Kendall’s tau  c). Lower – Upper (TDF) e). Lower – Lower (TDF) 

   
b). Histogram of best fitted copulas d). Upper – Upper (TDF) f). Upper – Lower (TDF) 

   
 

Panel B: Time varying optimal copula estimates for the oil and EN IG returns 

a). Kendall’s tau  c). Lower – Upper (TDF) e). Lower – Lower (TDF) 

   
b). Histogram of best fitted copulas d). Upper – Upper (TDF) f). Upper – Lower (TDF) 

   
Note: In each Panel, (a) shows the Kendal’s tau derived from the tail dependence parameters and (b) displays 
the percentages of best-fitted copula. N: normal; t: student-t; C: Clayton; G: Gumbel; RC: 180° Rotated 
Clayton; RG: 180° Rotated Gumbel; R1C: 90° Rotated Clayton; R1G: 90° Rotated Gumbel; R2C: 270° Rotated 
Clayton; R2G: 270° Rotated Gumbel. (c)-(f) present the time-varying tail dependence parameters. TDF stands 
for tail-dependence function. See notes to Table A.2 for further details. Source: Authors’ own estimation. 
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Figure A.3 Time varying optimal copula estimates for gas and bond returns 

Panel A: Time varying optimal copula estimates for the gas and EN HY returns 

a). Kendall’s tau  c). Lower – Upper (TDF) e). Lower – Lower (TDF) 

   
b). Histogram of best fitted copulas d). Upper – Upper (TDF) f). Upper – Lower (TDF) 

   
 

Panel B: Time varying optimal copula estimates for the gas and EN IG returns 

a). Kendall’s tau  c). Lower – Upper (TDF) e). Lower – Lower (TDF) 

   
b). Histogram of best fitted copulas d). Upper – Upper (TDF) f). Upper – Lower (TDF) 

   
Note: See notes to Figure A.2 and Table A.2. 
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Figure A.4 Downside and upside VaR, CoVaR and ∆CoVaR 

Panel A: Downside and upside VaR and CoVaR  
 
i). From oil to EN HY bond ii). From oil to EN IG bond 

  
iii). From gas to EN HY bond iv). From gas to EN IG bond 

  
  
Panel B: Downside and upside ∆CoVaR from energy to bond returns 
 
i). From oil to EN HY bond ii). From oil to EN IG bond 

  
iii). From gas to EN HY bond iv). From gas to EN IG bond 

  
 
Notes: VaR(D), CoVaR(D) and ∆CoVaR (D) are the downside value-at-risk and conditional VaR and delta 
CoVaR. VaR(U), CoVaR(U), and ∆CoVaR (U)  are the upside VaR, conditional VaR, and delta CoVaR. 
Downside and upside VaRs and CoVaRs are calculated under the quantiles of 5% and 95%, respectively. See 
notes to Table A.2 for further details.  
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Figure A.5 Histogram of VaRs 

Panel A: Overall market index 

a). Downside VaR b). Upside VaR 

  
Panel B: Energy sector index 

a). Downside VaR b). Upside VaR 

  
Notes: Downside and upside VaRs are calculated under the quantiles of 5% and 95%, respectively. See notes to 
Table A.2 for further details.  
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