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Table 9: Summary of BMA estimation: UIP
Mean no. regressors Draws Burn-ins Time No. models visited
6.0646 2 · 106 1 · 106 5.024066 mins 560,236
Modelspace Visited Topmodels Corr PMP No. obs.
16,384 34% 100% 1 162
Model prior g-prior Shrinkage-stats
Uniform UIP Av = 0.9939
Notes: In this specification, we employ the priors suggested by Eicher et al. (2011), who recommend using
the uniform model prior (each model has the same prior probability) and the unit information prior (the
prior provides the same amount of information as one observation of the data).

Figure 9: Model size and convergence, BMA with UIP prior
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Figure 10: Model Inclusion in BMA with BRIC prior
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Notes: Response variable: estimate of the DST effect in electricity savings. Columns denote individual models;
variables are sorted by posterior inclusion probability in descending order. Darker color = the variable is included
and the estimated sign is positive. Lighter color = the variable is included and the estimated sign is negative.
No color = the variable is not included in the model. The horizontal axis measures cumulative posterior model
probabilities. A detailed description of all variables is available in Table 4; numerical results of the BMA estimation
are reported in Table 7.

Figure 11: Model Inclusion in BMA with hyper-g prior
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Notes: Response variable: estimate of the DST effect in electricity savings. Columns denote individual models;
variables are sorted by posterior inclusion probability in descending order. Darker color = the variable is included
and the estimated sign is positive. Lighter color = the variable is included and the estimated sign is negative.
No color = the variable is not included in the model. The horizontal axis measures cumulative posterior model
probabilities. A detailed description of all variables is available in Table 4; numerical results of the BMA estimation
are reported in Table 7.
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Table 10: Summary of BMA estimation: BRIC
Mean no. regressors Draws Burn-ins Time No. models visited
5.5698 2 · 106 1 · 106 4.995537 mins 489,541
Modelspace Visited Topmodels Corr PMP No. obs.
16,384 29.88% 100% 1 162
Model prior g-prior Shrinkage-stats
Random BRIC Av = 0.9949
Notes: The “random” model prior refers to the beta-binomial prior advocated by Ley and Steel (2009);
Zellner’s g prior is set according to Fernandez et al. (2001).

Figure 12: Model size and convergence, BMA with BRIC prior
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Table 11: Summary of BMA estimation: hyper-g
Mean no. regressors Draws Burn-ins Time No. models visited
8.7791 2 · 106 1 · 106 8.367627 mins 1,285,508
Modelspace Visited Topmodels Corr PMP No. obs.
16,384 78.46% 100% 0.9995 162
Model prior g-prior Shrinkage-stats
Random hyper (a=2.0102) Av = 0.9949, Stdev=0.042
Notes: This specification of the “random” model uses the hyper-g prior suggested by Feldkircher and
Zeugner (2012).

Figure 13: Model size and convergence, BMA with hyper-g prior
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Table 12: Summary of BMA estimation: UIP, based on the US data
Mean no. regressors Draws Burn-ins Time No. models visited
4.6764 2 · 106 1 · 106 6.17748 mins 917,357
Modelspace Visited Topmodels Corr PMP No. obs.
512 19.62% 100% 1.0000 94
Model prior g-prior Shrinkage-stats
Uniform UIP Av = 0.9895
Notes: In this specification, we employ the priors suggested by Eicher et al. (2011), who recommend using
the uniform model prior (each model has the same prior probability) and the unit information prior (the
prior provides the same amount of information as one observation of the data).

Figure 14: Model size and convergence: BMA with UIP prior, based on the US data
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