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Part I. Proofs omitted from main text

1. MERIT ORDER EFFECT VS. DIVERSIFICATION

Proof of Theorem 1 We present the proof for the duopoly case, extension to n ≥ 2 is straightfor-
ward. With the concave (downward) inverse demand P and the convex cost C, profit of each (diverse)
thermal producer is given by

Πi = (qi + δR/2)P(Q + R) − C(qi ), (1)

where each conventional generator owns δR/2 units of renewable supply, δ ∈ [0, 1].
We first note that

∂p
∂R

=

(
∂Q
∂R

+ 1
)

P′(Q + R), (2)

where p ≡ P(Q + R). Since P′ is downward (i.e. P′ < 0), thus to show ∂p
∂R ≤ 0, we next prove that

∂Q
∂R + 1 ≥ 0.

FOC implies

0 =
∂Πi

∂qi
= P(Q + R) + (qi + δR/2)P′(Q + R) − C ′(qi )

By symmetry q1 = q2, thus the above equation is equivalent to

0 =
∂Πi

∂qi
= P(Q + R) + (

1
2

)(Q + δR)P′(Q + R) − C ′(Q/2) (3)

Taking derivative from (3) with respect to R implies

0 =

(
1 +

∂Q
∂R

)
P′(Q + R) + (

1
2

)
(
1 +

∂Q
∂R

)
(Q + δR)P′′(Q + R)

+ (
1
2

)
(
δ +

∂Q
∂R

)
P′(Q + R) − (

1
2

)
(
∂Q
∂R

)
C ′′

(
Q
2

)
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Rearranging terms yields

0 =

[
3P′(Q + R) + (Q + δR)P′′(Q + R) − C ′′

(
Q
2

)]
∂Q
∂R

+
[
(2 + δ)P′(Q + R) + (Q + δR)P′′(Q + R)

]

Consequently,

∂Q
∂R

= −
(2 + δ)P′(Q + R) + (Q + δR)P′′(Q + R)

3P′(Q + R) + (Q + δR)P′′(Q + R) − C ′′
(
Q
2

) (4)

Recall that the cost function is convex, thus C ′′ ≥ 0. As a result, with linear cost, C ′′ = 0, since
P′ < 0 and P′′ < 0, thus (4) implies

−1 ≤
∂Q
∂R

< 0 ⇒ 1 +
∂Q
∂R
≥ 0, and with δ = 1, − 1 =

∂Q
∂R

. (5)

Thus, using (2), we obtain ∂p
∂R ≤ 0. Moreover, when all renewable supply generates profits for only

conventional power generators (i.e. δ = 1), ∂p
∂R = 0, neutralizing the MoE. However, with strictly

convex cost (i.e. C ′′ > 0), for δ ∈ [0, 1]:

0 >
∂Q
∂R

= −
(2 + δ)P′(Q + R) + (Q + δR)P′′(Q + R)

3P′(Q + R) + (Q + δR)P′′(Q + R) − C ′′
(
Q
2

)
> −

(2 + δ)P′(Q + R) + (Q + δR)P′′(Q + R)
3P′(Q + R) + (Q + δR)P′′(Q + R)

≥ −1.

As a result, ∂Q
∂R + 1 > 0, consequently, using (2), ∂p

∂R < 0 for all δ ∈ [0, 1]. Therefore, full
neutralization may not be obtained with strictly convex cost functions.

To wrap up the proof we next show ∂p
∂δ > 0, diversification amplifies the prices. Since

∂p
∂δ

=

(
∂Q
∂δ

)
P′(Q + R)︸      ︷︷      ︸

<0

to prove the claim is then sufficient to show ∂Q
∂δ < 0. Taking a derivative from (3) with respect to δ

implies

0 =

(
∂Q
∂δ

)
P′(Q + R) + (

1
2

)
(
∂Q
∂δ

)
(Q + δR)P′′(Q + R) + (

1
2

)
(
R +

∂Q
∂δ

)
P′(Q + R)

− (
1
2

)
(
∂Q
∂δ

)
C ′′

(
Q
2

)
Rearranging terms gives

0 =

[
3P′(Q + R) + (Q + δR)P′′(Q + R) − C ′′

(
Q
2

)]
∂Q
∂δ

+ RP′(Q + R)

Therefore,

∂Q
∂δ

= −
RP′(Q + R)

3P′(Q + R) + (Q + δR)P′′(Q + R) − C ′′
(
Q
2

) < 0, (6)
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completing the proof of the first part.
To prove the second part we note that since P′ , 0, thus ∂p

∂R =
(
∂Q
∂R + 1

)
P′(Q + R) = 0 if

and only if ∂Q
∂R = −1. Therefore, when δ → 1, using (4), we obtain ∂Q

∂R = −1 if and only if C ′′ = 0.
Thus, under any condition ensuring a unique interior equilibrium, neutralization result prevails when
(i) thermal producers are diversified, (ii) cost of production (via thermal sources) is either linear or
constant, i.e. C ′′ = 0.

It is worthy to note that, inspired by the standard Cournot model, a unique equilibrium is

ensured in our model if: (i) C ′′ − P′(Q + R) > 0, (ii) P′(Q+R)+(qi+δ
R
2 )P′′(Q+R)

C′′−P′(Q+R) < 1
n , where n denotes

the number of thermal generators.

2. DERIVATIONS OF THE REDUCED-FROM MODELS

Proof of Theorem 2 Since Πi = (α − β(
∑

i qi + R))(qi + δR/n) − γqi , thus FOC implies α −
β(qi +

∑
j,i qj + R) − β(qi + δR/n) − γ = 0, for all i = 1,2, · · · ,n. Taking a sum over all i implies

n(α−γ)−nβ(Q+R)−β(Q+δR) = 0. Hence, at the equilibrium, Q =
n(α−γ)−β (δR+nR)

β (n+1) . By symmetry,

qi = Q/n =
α−γ−β (δR/n+R)

β (n+1) , for all i = 1,2, · · · ,n. Further, plugging Q into p = α − β(Q + R)

implies p =
α+β (−R+δR)+nγ

n+1 , as desired.

Proof of Theorem 3 As discussed when thermal producers are competitiveW (CE) =
(α−γ)2

2β +γR,
that is independent of δ. Next, we consider the case in which thermal producers are strategic. Thus,
at the corresponding Nash equilibrium the welfare is given by

W (N E) = (QNE + δR)pNE − γQNE + pNE (1 − δ)R +
(α − pNE )2

2β

= (pNE − γ)QNE + RpNE +
(α − pNE )2

2β

where (as shown in Theorem 2) the overall production is given by QNE = n
(n+1)β (α−γ− β(R+δR/n))

and the resulting spot price satisfies pNE = 1
n+1 (α + β(−R + δR) + nγ). Therefore

∂W (N E)
∂δ

=

(
∂pNE

∂δ

)
QNE + (pNE − γ)

∂QNE

∂δ
+
∂pNE

∂δ
R −

1
β

(α − pNE )
∂pNE

∂δ

= (pNE − γ)︸       ︷︷       ︸
>0

∂QNE

∂δ︸  ︷︷  ︸
<0

< 0, (7)

note that pNE > γ, because α + β(−R + δR) − γ > 0. Equation (7) immediately implies
∂
∂δ

(
W (CE )
W (NE )

)
> 0, completing the proof.

Proof of Theorem 4 To have a better understanding of the proof steps we first consider the duopoly
case. The oligopoly case is more involved but it follows similar steps.

Consider the duopoly case, i.e. n = 2. By adding forward contract to the previous case the
profit of each generator becomes Πi (q1,q2) = (α − β(q1 + q2 + R))(qi − q f

i + δR/2) + q f
i p f

i − γqi .
In this case, the economy has two dates, t = 1,2: generators sign forward contract at t = 1 and the
market clearing price p = α − β(

∑n
i=1 qi + R) is characterized at the final date t = 2. The solution
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strategy is to work backward. Thus, given (q f
1 ,p

f
1 ,q

f
2 ,p

f
2 ), FOC implies

0 =
∂Πi

∂qi
= α − γ − β(q1 + q2 + R) − β(qi − q f

i + δR/2). (8)

Summing over i ∈ {1,2} and rearranging terms imply Q = 1
3β

(
2α − 2βR − β(−Q f + δR) − 2γ

)
.

Plugging Q into (8) and some alegra yield

qi =
1

3β

(
α − γ − β(Q f − 3q f

i + R + δR/2)
)
.

Now, given the optimal supply at the final date, we next characterize the optimal forward contract for
each generator. Note that assuming no possibility for arbitrage implies at t = 1 the forward quantity
q f
i is signed at the market price, i.e. p f

i = p. Thus, optimal q f
i maximizes p(qi + δR/2) − γqi , where

p = α − β(q1 + q2 + R). Since ∂p

∂q
f
i

= −β/3 and ∂qi

∂q
f
i

= 2/3, thus FOC gives ∂p

∂q
f
i

(qi + δR/2) +

p ∂qi

∂q
f
i

− γ
∂qi

∂q
f
i

= −
β
3 (qi + δR/2) + (p − γ) 2

3 = 0. Simplifying this equation after plugging (8) into it,

implies

q f
1 = q f

2 =
1

5β

(
α − γ + β(−R + δR)

)
.

Plugging q f
i into (8) yields qi = 2

5β

(
α − γ + β(−R − δR/4)

)
. Finally, market price becomes

p = α − β(q1 + q2 + R) = 1
5

(
α + 4γ + β(−R + δR)

)
.

We next consider the oligopoly case, i.e. n ≥ 2. Given the profit of producer i, i.e.
Πi (qi ,q−i ) = (α − β(qi +

∑
j,i qj + R))(qi − q f

i + δR/n) + q f
i p f

i − γqi , employing the FOC implies
α − γ − β

(∑
j,i qj + R − q f

i + δR/n
)

= 2βqi . Thus, rearranging terms yields

α − γ − β
*.
,
2qi +

∑
j,i

qj + R − q f
i + δR/n+/

-
= 0. (9)

Let Q ≡
∑n

j=1 Q j . Taking a sum over all i from (9) implies

Q =
n(α − γ − βR) − β(−Q f + δR)

(n + 1) β
, (10)

where Q f ≡
∑n

i=1 q f
i .

Next, from (9) we obtain

α − β(Q + R) − β(−q f
i + δR/n) − γ = βqi .

The LHS of the above equation can be simplified as follows:

LHS = (α − γ) − βR − β(q f
i + δR/n) − βQ

=
1

n + 1

(
(n + 1)[(α − γ) − βR − β(−q f

i + δR/n)] − n(α − γ) + nβR + β(−Q f + δR)
)

=
1

n + 1

(
(α − γ) − β

[
Q f − (n + 1)q f

i + R + δR/n
] )
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Therefore, we have

qi =
1

(n + 1) β

(
α − γ − β

[
Q f − (n + 1)q f

i + R + δR/n
] )
. (11)

Next, we move to the contracting stage.
Contracting stage Equipped with the results from the production stage, we next find optimal
forward quantities, i.e. q f

1 ,q
f
2 , · · · ,q

f
n . Importantly, due to the no arbitrage assumption p f

i = p. Thus,
producer i’s optimal choice for q f

i should maximize(
α − β(Q(q f

i ,q
f
−i ) + R)

)
(qi (q

f
i ,q

f
−i ) + δR/n) − γqi (q

f
i ,q

f
−i ).

Thus, the FOC gives

(α − β(Q(q f
i ,q

f
−i ) + R))

∂qi (q
f
i ,q

f
−i )

∂q f
i

− β
∂Q(q f

i ,q
f
−i )

∂q f
i

(
qi (q

f
i ,q

f
−i ) + δR/n

)
− γ

∂qi (q
f
i ,q

f
−i )

∂q f
i

= 0

(12)

Since
∂qi (q f

i ,q
f
−i )

∂q
f
i

= n
n+1 (see (11)) and

∂Q(q f
i ,q

f
−i )

∂q
f
i

= 1
n+1 (see (10)), thus (12) yeilds

(α − β(Q(q f
i ,q

f
−i ) + R))

n
n + 1

− γ
n

n + 1
− (qi (q

f
i ,q

f
−i ) + δR/n)

β

n + 1
= 0 (13)

multiplying in (n+1) and rearranging terms give −β(qi (q
f
i ,q

f
−i )+nQ(q f

i ,q
f
−i ))+n(α−γ)− β(δR/n+

nR) = 0. By symmetry q1(q f
1 ,q

f
−1) = q2(q f

2 ,q
f
−2) = · · · = qn (q f

n ,q
f
−n ), thus

−β(n2 + 1)qi (q
f
i ,q

f
−i ) + n(α − γ) − β(δR/n + nR) = 0. (14)

Moreover, (11) gives that −β(n2 + 1)qi (q
f
i ,q

f
−i ) = − n2+1

n+1

(
α − γ − β

[
−q f

i + R + δR/n
] )
, note that

by symmetry q f
1 = q f

2 = · · · = q f
n .

Plugging this into (14) gives

− (n2 + 1)
[
α − γ − β(−q f

i + R + δR/n)
]

+ (n2 + n)(α − γ) − (n + 1) β(δR/n + nR) = 0. (15)

Rearranging terms implies

(n2 + 1) βq f
i = (n − 1)(α − γ) + (n2 + 1) β(R + δR/n) − (n + 1) β(δR/n + nR)

= (n − 1)[α − γ + β(−R + δR)].

Thus

q f
i =

n − 1
(n2 + 1) β

(
α − γ + β(−R + δR)

)
. (16)

Copyright© 2017 by the IAEE. All rights reserved.
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Thus, we finally find qi by plugging q f
i into (11). That is

qi =
1

(n + 1) β

(
α − γ − β(−q f

i + R + δR/n)
)

=
1

(n + 1) β

(
α − γ − β

[
−

n − 1
(n2 + 1) β

(
α − γ + β(−R + δR)

)
+ R + δR/n

])
=

n
(n2 + 1) β

(
α + β

(
−R −

δR
n2

)
− γ

)
.

With the characterization of qi , i = 1,2 · · · ,n, the proof is complete.

3. CORRELATED SHOCKS AND INCOMPLETE INFORMATION WITH
ENDOGENOUS FORWARD CONTRACT

3.1 Equilibrium characterization

Proof of Theorem 5 It is useful to construct the equilibrium sequentially and work backward. We
start by deriving the optimal behavior at the production stage, for any given set of forward contract
level (q f

i ,p
f
i )i=1, · · · ,n that summarizes the behavior at the production stage. Next, we analyze the

optimal behavior at the contracting stage.
Production stage For a given profile of contracting profile ((q f

1 ,p
f
1 ), · · · , (q f

n ,p
f
n )), the production

stage is a game with imperfect competition in the class of normal linear-quadratic games with
correlated types, once a generator information Ri is established as the type. A strategy qi is a mapping
from the information set into the real space: qi : R→ R+ for a given individual contracting choice
(q f

i ,p
f
i ). We focus on linear equilibria at the production stage throughout, that is for each generator

i = 1, · · · ,n, there exists ai and bi such that qi (Ri ) = bi − aiθi . Optimality for generator i at the
production stage requires that strategy qi maximizes the conditional expected utility, taking all other
generators strategies q−i as given. Furthermore, applying the projection theorem,1 with the linear
information structure conditional expectations E(θ j |θi ) are linear in θi , for all i, j.

Producer i chooses qi to maximize

Eθ−i (Πi |Ri ) = E{p(qi − q f
i + δiRi ) + p f

i q f
i − γqi |Ri }

where qj (θ j ) = bj − a jθ j , for all j , i, and p = α − β(qi + Ri +
∑

j,i Rj +
∑

j,i qj ). Recall that
Ri = R/n + θi , for all i = 1,2, · · · ,n, thus, the first order conditions (FOC) gives

α − γ − β
*.
,

∑
j,i

E[qj (θ j ) |Ri] +
∑
j,i

E[θ j |Ri] + θi + R+/
-
− β(−q f

i + δR/n + δθi ) = 2βqi (17)

Using the projection theorem:

E[qj (θ j ) |Ri] = E[qj (θ j ) |θi] = bj − a j Cov(θi , θ j ) σ−2 θi = bj − a j κi, jθi

E[θ j |Ri] = E[θ j |θi] = Cov(θi , θ j ) σ−2 θi = κi, jθi . (18)

1Let θ and ν be random variables such that (θ, ν) ∼ N (µ, Σ) such that:

µ ≡

(
µθ
µν

)
Σ ≡

(
Σθ,θ Σθ,ν

Σν,θ Σν,ν

)
are expectations and variance-covariance matrix, then the conditional density of θ given ν is normal with conditional mean
µθ + Σθ,νΣ

−1
ν,ν (ν − µν ) and variance-covariance matrix Σθ,θ − Σθ,νΣ−1

ν,νΣν,θ , provided that Σν,ν is non-singular.

Copyright© 2017 by the IAEE. All rights reserved.
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Plugging (18) into (17) and rearranging terms gives

*.
,
α − γ − β

*.
,

∑
j,i

bj + R − q f
i + δR/n+/

-

+/
-
− θi β

*.
,
(1 + δ) +

∑
j,i

κi, j −
∑
j,i

a j κi, j
+/
-

= (2βbi ) − θi (2βai ) (19)

Next, to find ai , we only need to equate the coefficient of θi in the LHS and RHS of (19),
that implies (note that β > 0)∑

j,i

κi, ja j + 2ai = (1 + δ) +
∑
j,i

κi, j ≡ vi (20)

⇒ Aa = v,

where A ≡ 1
σ2 Σ + I, and I denotes the identity matrix. Since A is positive define, it is invertible and

thus

a = A−1v, (21)

that is

*.....
,

a1

a2
...

an

+/////
-

=

*.....
,

2 κ1,2 · · · κ1,n

κ2,1 2 · · · κ2,n
...

...
. . .

...

κn,1 κn,2 · · · 2

+/////
-

−1

*.....
,

1 + δ +
∑

j,1 κ1, j

1 + δ +
∑

j,2 κ2, j
...

1 + δ +
∑

j,n κn, j

+/////
-

.

Thus,

a =

(
I +

1
σ2 Σ

)−1 (
δ1 +

1
σ2 Σ1

)
=

(
I +

1
σ2 Σ

)−1 (
(δ − 1)1 + 1 +

1
σ2 Σ1

)
= 1 + (δ − 1)

(
I +

1
σ2 Σ

)−1

1.

Similarly, we derive bi . Equating the terms that are independent of θi in the LHS and RHS of (19)
implies

α − γ − β
*.
,

∑
j,i

bj + R − q f
i + δR/n+/

-
= 2βbi

⇒ α − γ − β
*.
,
2bi +

∑
j,i

bj + R − q f
i + δR/n+/

-
= 0. (22)

Let b ≡
∑n

j=1 bj . Taking a sum over all i from (22) gives

b =
nα − nγ − nβR − β(−Q f + δR)

(n + 1) β
(23)

where Q f ≡
∑n

i=1 q f
i . In addition, from (22) we have

α − βb − βR − β(−q f
i + δR/n) − γ = βbi .

Copyright© 2017 by the IAEE. All rights reserved.
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The LHS of the above equation can be simplified as follows:

LHS = (α − γ) − βR − β(q f
i + δR/n) − βb

=
1

n + 1

(
(n + 1)[(α − γ) − βR − β(−q f

i + δR/n)] − n(α − γ) + nβR + β(−Q f + δR)
)

=
1

n + 1

(
(α − γ) − βR − β

[(
−(n + 1)q f

i +
n + 1

n
δR

)
+ Q f − δR

])
=

1
n + 1

(
(α − γ) − β

[
Q f − (n + 1)q f

i + R + δR/n
] )

Therefore, we finally have

bi =
1

(n + 1) β

(
α − γ − β

[
Q f − (n + 1)q f

i + R + δR/n
] )
. (24)

The above equations summarize the unique linear equilibrium in the production stage.
Stage 1: Contracting stage Equipped with the results from the production stage, we next evaluate
the amount of optimal forward contract q f

i for each generator i = 1,2, · · · ,n, at the average market
price p f

i = Eθ[p] (due to the no arbitrage assumption). This is achieved by computing expected
payoff of each generator. Thus, generator i’s optimal choice for q f

i should maximize

Eθ



*.
,
α − β(qi (q

f
i ,q

f
−i ) + Ri +

∑
j,i

Rj +
∑
j,i

qj (q
f
j ,q

f
− j ))+/

-
(qi (q

f
i ,q

f
−i ) + δRi ) − γqi (q

f
i ,q

f
−i )


.

The optimal choice in the production stage is linear in the observed information and is in the form of
qi (θi ) = bi − aiθi . Characterization of ai and bi (see (24) and (37)) gives

∂qi (q
f
i ,q

f
−i )

∂q f
i

=
∂bi (q

f
i ,q

f
−i )

∂q f
i

.

By the above equality and the fact that E[θi] = 0 and E[Ri] = R/n, it is sufficient to find q f
i

maximizing
(α − β(b(q f

i ,q
f
−i ) + R))(bi (q

f
i ,q

f
−i ) + δR/n) − γbi (q

f
i ,q

f
−i ).

The FOC gives

(α − β(b(q f
i ,q

f
−i ) + R))

∂bi (q
f
i ,q

f
−i )

∂q f
i

− β
∂b(q f

i ,q
f
−i )

∂q f
i

(
bi (q

f
i ,q

f
−i ) + δR/n

)
− γ

∂bi (q
f
i ,q

f
−i )

∂q f
i

= 0

(25)

Since
∂bi (q f

i ,q
f
−i )

∂q
f
i

= n
n+1 (see (24)) and

∂b(q f
i ,q

f
−i )

∂q
f
i

= 1
n+1 (see (23)), thus (25) gives

(α − β(b(q f
i ,q

f
−i ) + R))

n
n + 1

− γ
n

n + 1
− (bi (q

f
i ,q

f
−i ) + δR/n)

β

n + 1
= 0. (26)

Multiplying (26) in (n + 1) and rearranging terms yield

−β(bi + nb(q f
i ,q

f
−i )) + n(α − γ) − β(δR/n + nR) = 0.
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By symmetry b1(q f
1 ,q

f
−1) = b2(q f

2 ,q
f
−2) = · · · = bn (q f

n ,q
f
−n ), thus

−β(n2 + 1)bi (q
f
i ,q

f
−i ) + n(α − γ) − β(δR/n + nR) = 0. (27)

Further, (24) implies that (note that by symmetry q f
1 = q f

2 = · · · = q f
n )

−β(n2 + 1)bi (q
f
i ,q

f
−i ) = −

n2 + 1
n + 1

(
α − γ − β

[
−q f

i + R + δR/n
] )

Plugging this into (27) gives

− (n2 + 1)
[
α − γ − β(−q f

i + R + δR/n)
]

+

(n2 + n)(α − γ) − (n + 1) β(δR/n + nR) = 0. (28)

Rearranging terms implies

(n2 + 1) βq f
i = (n − 1)(α − γ) + (n2 + 1) β(R + δR/n) − (n + 1) β(δR/n + nR)

= (n − 1)(α − γ) + β((n2 + 1)R − (n2 + n)R + [(n2 + 1) − (n + 1)]δR/n)

= (n − 1)(α − γ) + β(−(n − 1)R + (n − 1)δR)

= (n − 1)[α − γ + β(−R + δR)].

Thus

q f
i =

n − 1
(n2 + 1) β

(
α − γ + β(−R + δR)

)
. (29)

Finally, we next find bi . Plugging q f
i into (24) gives

bi =
1

(n + 1) β

(
α − γ − β(−q f

i + R + δR/n)
)

=
1

(n + 1) β

(
α − γ − β

[
−

n − 1
(n2 + 1) β

(
α − γ + β(−R + δR)

)
+ R + δR/n

])
=

1
(n + 1) β

(
α − γ −

[
−(n − 1)[α − γ + β(−R + δR)] + (n2 + 1) β(R + δR/n)

n2 + 1

])

=
1

(n + 1) β
*.
,

(n2 + n)(α − γ) + β
(
−(n2 + n)R − n2+n

n2 δR
)

n2 + 1
+/
-

=
n

(n2 + 1) β

(
α + β

(
−R −

δR
n2

)
− γ

)
.

With the characterization of bi , i = 1,2 · · · ,n, the proof is complete.
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4. DERIVATIONS OF PRICE VOLATILITY AND WELFARE/PROFIT

4.1 Price volatility

Proof of Proposition 1 and Proposition 2 As shown in Theorem 5 the optimal production strategy
is in form of qi (Ri ) = bi − aiθi , where bi and ai are scalars. Thus

V ar (p) = V ar *
,
α − β *

,

n∑
i=1

(bi − aiθi ) +

n∑
i=1

(R/n + θi )+
-

+
-

= β2V ar *
,

n∑
i=1

(ai − 1)θi+
-

= β2
(
aTΣa − 2aTΣ1 + 1TΣ1

)
= β2(a − 1)TΣ(a − 1)

= β2(δ − 1)2 1T
(
I +

1
σ2 Σ

)−1

Σ

(
I +

1
σ2 Σ

)−1

1

= β2(δ − 1)2 bT
Σb,

where b ≡
(
I + 1

σ2 Σ
)−1

1.
We next derive price volatility when Definition 1 holds. First note that for regular configura-

tions, we have vi = 1 + δ +
∑

j,i κi, j = 1 + δ + K , for all i = 1,2, · · · ,n. Therefore, due to (20), the
optimal ai satisfies

2ai +
∑
j,i

a j κi, j = vi = 1 + δ + K.

Thus, by symmetry, we have a1 = · · · = an = 1+δ+K
2+K . Consequently,

V ar (p) = β2
(
1 −

1 + δ + K
2 + K

)2

1TΣ1 = nσ2 β2
(

1 − δ
2 + K

)2

(1 + K ),

completing the proof.

Proof of Proposition 3 Since the decay factor ζ ∈ (0 1), thus

Kcycle = 2
(
ζ + ζ2 + · · · + ζ

n−1
2

)
= 2ζ *

,

1 − ζ
n−1

2

1 − ζ
+
-
≤ (n − 1)ζ = Kcomplete

Moreover, by the characterization of price volatility in Proposition 2, it is clear that ∂Var (p)
∂K ≤ 0.

Thus, price volatility is in decreasing the decay factor because

∂V ar (p)
∂ζ

=
∂V ar (p)
∂K

∂K
∂ζ︸︷︷︸
≥0

≤ 0.

This implies that price volatility in the complete model is less than the cycle model, completing the
proof. Note that since κi, j ∈ {0, κ}, for any i , j, thus given the definition of regular structures, for
any regular configuration with n renewable plants, K (n)

cycle < K (n)
regular < K (n)

complete.
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Part II. Extra results and Extensions

5. WELFARE (GENERAL ANALYSIS)

Suppose the demand arises from an aggregate consumer whose gross surplus U (q) ≥ 0 is concave in
q, i.e. U ′′ < 0 (we assume U (0) = 0). This gives rise to the inverse demand P(q) = U ′(q).2 The rest
of the economy is as in Section 2.1 (in the main text): there are n thermal producers in the market,
each thermal producer i faces a (convex and increasing) cost function C(qi ) of supplying qi unit of
energy via thermal sources, the economy has a total R units of renewable energy (at zero marginal
cost), and each thermal producer owns a fraction δ/n units of R where δ ∈ [0,1].

The welfare in this economy is the sum of three components: the renewable producers
surplus3 (i.e. (1 − δ)pR, where p ≡ P(

∑n
i=1 qi + R)), the (total) thermal producers surplus (i.e.∑n

i=1 Πi =
∑n

i=1[p(qi + δR/n) − C(qi )]), and the consumer (net) surplus (i.e. U (
∑n

i=1 qi + R) −
(
∑n

i=1 qi + R)p). As a result

W ≡ *
,

n∑
i=1

qi + δR+
-

p −
n∑
i=1

C(qi ) + (1 − δ)Rp + U *
,

n∑
i=1

qi + R+
-
− *

,

n∑
i=1

qi + R+
-

p

= U *
,

n∑
i=1

qi + R+
-
−

n∑
i=1

C(qi ) (30)

Appendix-Theorem 1 LetW (CE) denote the welfare at the corresponding competitive equilibrium
andW (N E) denote the welfare at the corresponding Nash equilibrium. Then, the ratio W (CE )

W (NE ) is
increasing in δ. That is, increasing the diversification ratio leads to an increase in the welfare loss.

Proof of Appendix-Theorem 1 The proof follows in three steps as follows.
Step 1 (characterizingW (CE)): Let qCE

1 , · · · ,qCE
n be the quantities produced by thermal pro-

ducers at the competitive equilibrium. SinceW (CE){qCE
1 , · · · ,qCE

n } = maxq1≥0, · · · ,qn ≥0W , thus
the first order optimality condition of (30) implies that qCE

1 , · · · ,qCE
n should satisfy the following

equations:

U ′ *
,

n∑
i=1

qCE
i + R+

-
− C ′(qCE

i ) = 0, ∀i = 1,2, · · · ,n.

By symmetry qCE
1 = · · · = qCE

n = QCE/n (where QCE =
∑n

i=1 qCE
i ). Therefore, QCE is character-

ized from the following equality

U ′
(
QCE + R

)
− C ′(QCE/n) = 0. (31)

Step 2 (characterizing W (N E)): Let qNE
1 , · · · ,qNE

n be the quantities produced via thermal
sources when thermal producers are strategic. Thus,

qNE
i ∈ arg max

qi ≥0
(qi + δR/n)P *.

,
qi + R +

∑
j,i

qNE
j

+/
-
− C(qi ),

given (qNE
1 , · · · ,qNE

i−1 ,q
NE
i+1 , · · · ,q

NE
n ).

2For example, whenU (q) = αq−
β
2 q

2, the inverse demand becomes P(q) = α− βq, the linear inverse demand adopted
in the previous sections.

3Renewable producers do not have market power. As a result, they sell their production at the level of spot price
characterized by the (diversified) thermal producers.
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The corresponding first order optimality condition gives

P(QNE + R) + (qNE
i + δR/n)P′(QNE + R) − C ′(qNE

i ) = 0, i = 1,2, · · · ,n, (32)

where QNE ≡
∑n

i=1 qNE
i . Finally, symmetry implies qNE

1 = · · · = qNE
n = QNE/n. Since (by

definition) P(QNE + R) = U ′(QNE + R), thus (32) gives

U ′(QNE + R) − C ′(QNE/n) = −(qNE
i + δR/n)P′(QNE + R)

= −(qNE
i + δR/n)U ′′(QNE + R)

> 0,

where the last inequality is true because U ′′ < 0.
Step 3 (Effect of δ onW (CE) andW (N E)): In this step we showW (CE) does not depend on
δ, however,W (N E) is decreasing in δ. Equation (30) implies

∂W (T )
∂δ

=

n∑
i=1

∂qTi
∂δ


U ′ *

,

n∑
i=1

qTi + R+
-
− C ′(qTi )



=
∂QT

∂δ

(
U ′(QT + R) − C ′(QT /n)

)
for T ∈ {CE,N E}.

Therefore, as shown in Step 2, U ′
(
QCE + R

)
− C ′(QCE/n) = 0, thus ∂W (CE )

∂δ = 0, i.e. W (CE)

does not depend on δ. However, as shown in Step 3, U ′
(
QNE + R

)
− C ′(QNE/n) > 0, thus

sign{ ∂W (NE )
∂δ } = sign{ ∂Q

NE

∂δ }. Moreover, we show in Theorem 1 that ∂QNE

∂δ < 0, therefore
∂W (NE )

∂δ < 0, i.e. W (N E) is decreasing in δ. As a result, ∂
∂δ

(
W (CE)
W (NE )

)
> 0, completing the

proof.

5.1 Price Volatility: Linear vs. Quadratic costs

We focus on regular configurations, which represents a symmetric correlation structure for the
renewable plants. This is defined formally through the covariance matrix of θi’s as follows.

Definition 1 (Regular configurations) Renewable plants have a regular configuration if the covari-
ance matrix Σ is row-(sub)stochastic. That is,

∑n
j,i κi, j = K, where K is fixed and the same for all

i = 1,2, · · · ,n.

Hence, regular configurations represent a correlation structure in which the total covariance
of each θi with other θ j ’s is the same. It follows from Theorem 5 that for regular configurations,
the equilibrium is symmetric, i.e., a1 = · · · = an . Moreover the price volatility can be characterized
explicitly in terms of K as follows.

Appendix-Theorem 2 Let the production cost via thermal sources be given by C(qi ) = γqi + λ
2 q2

i .
Then, the price volatility of any regular configuration is given by

V ar (p) = nσ2 β2
(
β(1 − δ) + λ

β(2 + K ) + λ

)2

(1 + K ). (33)

Moreover:

(i) When producers have strictly convex costs (i.e. λ > 0) and are fully diversified (they have full
ownership of renewable supply), price volatility does not disappear, i.e., if λ > 0 and δ = 1,
then V ar (p) , 0. This result holds for any configuration (i.e. there is no need to have a regular
configuration).
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(ii) When cost is linear (i.e. λ = 0), price volatility is monotonically decreasing in K, i.e.,
∂Var (p)
∂K < 0.

(iii) Let β be fixed. When cost is strictly convex (i.e. λ > 0), depending on the degree of convexity
in the cost function price volatility can be either increasing or decreasing in K. To be precise

sign{
∂V ar (p)
∂K

} =



+ if λ
β > K ;

− if λ
β < K .

This result has two important consequences. First, when cost function is sufficiently convex,
i.e. λ > 0, in contrast to the linear cost (see Proposition 1), price volatility does not disappear
when δ = 1. This is simply because when thermal producers are fully diversified, i.e. δ = 1,
and their cost function is convex, i.e. λ > 0, then the total supply (via thermal and renewable
sources) of each producer i still depends on θi (this will be more clear by the following Example).
Second, the monotonicity of price volatility in K depends on the extent of convexity in the cost
function. That is, assuming β is fixed, depending on the extent of convexity in the cost function,
price volatility can be either increasing or decreasing in K . In fact, in contrast to the linear cost
function, with increasing the extent of convexity in the cost function, price volatility can become
increasing in K . To see this, suppose the cost function from thermal sources, i.e. C(qi ), is sufficiently
convex in qi , so that production from thermal sources is so expensive. Therefore, each diversified
thermal producer cuts its production via thermal sources (i.e. qi (θi ) becomes small). As a result, the
aggregate production in the economy mostly comes form the aggregate renewable supply. That is,
Aggregate production =

∑n
i=1 qi (θ) +

∑n
i=1 Ri ≈

∑n
i=1 Ri = R +

∑n
i=1 θi ,where R is constant. Hence,

increasing correlation, i.e. K , increases V ar (
∑n

i=1 θi ) = 1TΣ1 = nσ2(1 + K ), increasing volatility in
the aggregate production. Thus, price volatility can increase with increasing K , given λ is sufficiently
large.

Proof of Appendix-Theorem 2 The proof follows similar steps as in the proofs of Theorem 5 and
Proposition 1. In the first part the analysis is for a general configuration. Next we focus on the regular
configurations.
General configuration Given that C(qi ) = γqi + λ

2 q2
i , producer i’s objective is to choose qi

maximizing

Eθ−i (Πi |Ri ) = E{p(qi − q f
i + δiRi ) + p f

i q f
i − γqi −

λ

2
q2
i |Ri }

where qj (θ j ) = bj − a jθ j , for all j , i, and p = α − β(qi + Ri +
∑

j,i Rj +
∑

j,i qj ). Since
Ri = R/n + θi , for all i = 1,2, · · · ,n, thus, the first order optimality condition (FOC) implies

α − γ − β
*.
,

∑
j,i

E[qj (θ j ) |Ri] +
∑
j,i

E[θ j |Ri] + θi + R+/
-
− β(−q f

i + δR/n + δθi ) = (2β + λ)qi

(34)

Using the projection theorem: E[qj (θ j ) |Ri] = bj − a j κi, jθi and E[θ j |Ri] = κi, jθi .
As a result rearranging terms in (34) gives

*.
,
α − γ − β

*.
,

∑
j,i

bj + R − q f
i + δR/n+/

-

+/
-
− θi β

*.
,
(1 + δ) +

∑
j,i

κi, j −
∑
j,i

a j κi, j
+/
-

= ((2β + λ)bi ) − θi ((2β + λ)ai ) (35)

To analyze price volatility we only need to find ai for i = 1,2, · · · n. Thus, we only need to
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equate the coefficient of θi in the LHS and RHS of (35), that implies (note that β > 0)∑
j,i

κi, ja j +

(
2 +

λ

β

)
ai = (1 + δ) +

∑
j,i

κi, j ≡ vi (36)

⇒ Ãa = v,

where Ã ≡ 1
σ2 Σ +

(
1 + λ

β

)
I, and I denotes the identity matrix. Since Ã is positive define, it is

invertible and thus

a = Ã−1v

=

(
1
σ2 Σ + (1 +

λ

β
)I

)−1

(δ1 +
1
σ2 Σ1)

=

(
1
σ2 Σ + (1 +

λ

β
)I

)−1 (
(δ − (1 +

λ

β
)) I +

1
σ2 Σ + (1 +

λ

β
) I

)
1

= 1 + (δ −
(
1 +

λ

β

)
)
((

1 +
λ

β

)
I +

1
σ2 Σ

)−1

1. (37)

As shown in the proof of Proposition 1, V ar (p) = (a − 1)TΣ(a − 1), thus

V ar (p) = (δ −
(
1 +

λ

β

)
)2 1T

((
1 +

λ

β

)
I +

1
σ2 Σ

)−1

Σ

((
1 +

λ

β

)
I +

1
σ2 Σ

)−1

1

Thus, when λ > 0 and δ = 1 (in contrast to the linear cost), V ar (p) , 0.
Regular configuration For regular configurations a1 = · · · = an ≡ ã. Thus (36) implies ã =
β (1+δ+K )
β (K+2)+λ .

Moreover, as shown in the proof of Proposition 1, V ar (p) = β2V ar
(∑n

i=1(ai − 1)θi
)
, thus

for regular configurations we have

V ar (p) = β2(ã − 1)21TΣ1 = nσ2 β2
(
β(1 − δ) + λ

β(2 + K ) + λ

)2

(1 + K ).

The explicit characterization of V ar (p) implies that

∂V ar (p)
∂K

=

(
nσ2 β2 (β(1 − δ) + λ)2

(β(2 + K ) + λ)3

)
[λ − βK]

completing the proof.

Example (Duopoly with incomplete information and quadratic cost) Let us assume each pro-
ducer i ∈ {1,2} owns a generator that produces qi units of thermal energy at cost C(qi ) = λ

2 q2
i (where

λ > 0). In this economy thermal producers are also capable to generate energy from renewable
plants. To this end, we assume there are two intermittent plants. Let `1 and `2 denote the locations
of these plants. Each producer i privately observes the available renewable energy Ri at local plant
li . We assume Ri = R/2 + θi , where R is a constant, and θi is normally distributed with mean
zero and variance σ2, i.e., θi ∼ N (0,σ2). The vector θ = (θ1, θ2) is assumed to be jointly normal
and cov(θ1, θ2) = κσ2, where κ ∈ [0,1]. The scalar κ captures the correlation between available
renewable energy at plants li and l j .4

For ease of exposition we assume p ≡ α − (q1 + q2 + R1 + R2), consequently,5 producer i’s

4It is worth noting that adding forward contract does not have any effect on the price volatility.
5In this simple example we assume β = 1.
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(ex-post) payoff becomes:

Πi = p(qi + δRi ) − λ
q2
i

2
= (α − q1 − q2 − R1 − R2)(qi + δRi ) − λ

q2
i

2
.

Solving this case implies

qi (θi ) =
α − R − δR/2

λ + 3
−

(
1 + δ + κ

λ + 2 + κ

)
θi

V ar[p] = 2σ2
(
λ + 1 − δ
λ + 2 + κ

)2

(1 + κ) (38)

Therefore, with increasing λ, intuitively, production from thermal sources decreases, i.e. ∂E[qi (θi )]
∂λ <

0.
Furthermore, using Theorem 2, we have

∂V ar (p)
∂κ

=

(
2σ2(λ + 1 − δ)2

(λ + 2 + κ)3

)
(λ − κ).

Therefore, depending on the extent of convexity in the cost function, price volatility can be decreasing
or increasing with respect κ. To be precise:

sign(
∂V ar (p)

∂κ
) = sign(λ − κ)

where as for the linear cost price volatility monotonically decreases in κ (see Proposition 2).

5.2 Degrees of convexity and concavity

This section analyzes the effects of convex cost and concave inverse demand functions on the market
price, when thermal producers have a diverse energy portfolio. We show, for a given concave inverse
demand function, with increasing extent of convexity in the cost function market price goes up.
However, for a given convex cost function, with increasing extent of concavity in the inverse demand
market price goes down. To this end, we consider two cases as follows. Without loss of generality we
assume n = 2.

Concavity analysis of the inverse demand Let the cost function be a given convex function (i.e.
C ′′ ≥ 0), and inverse demand be p = P(Q) = α − βQ2, where β > 0. Thus, the more β is, the more
concave the inverse demand P(Q) is. The objective is to show ∂p

∂β < 0.
The profit of each (diverse) thermal producer is given by

Πi = (qi + δR/2)P(Q + R) − C(qi ) = (qi + δR/2)(α − β(Q + R)2) − C(qi )

FOC then gives ∂Πi

∂qi
= (α − β(Q + R)2) + (qi + δR/2)(−2β(Q + R)) −C ′(qi ) = 0. Due to symmetry

(at equilibrium) q1 = q2. Thus,

0 = (α − β(Q + R)2) + (Q + δR)(−β(Q + R)) − C ′(Q/2).

Taking a derivative with respect β implies

[
(Q + R)2 + (Q + δR)(Q + R)

]
+
∂Q
∂ β

[
3β(Q + R) + β(Q + δR) + 1/2C ′′(Q/2)

]
= 0.
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Thus (note that C ′′ ≥ 0),

∂Q
∂ β

= −
(Q + R)2 + (Q + δR)(Q + R)

3β(Q + R) + β(Q + δR) + 1/2C ′′(Q/2)
< 0.

What is the effect of inverse demand concavity (controlled by β) on the market price p? Since
p = α − β(Q + R)2, thus

∂p
∂ β

= −(Q + R)2 − 2β(Q + R)
∂Q
∂ β

= −(Q + R)2
[
1 − 2β

Q + R + Q + δR
3β(Q + R) + β(Q + δR) + 1/2C ′′(Q/2)

]

≤ 0,

where the last inequality is correct because [...] ≥ 0 (note that δ ∈ [0, 1] and C ′′ ≥ 0). Therefore,
with increasing extent of concavity in the inverse demand market price decreases.

Convexity analysis of the cost function Let the inverse demand be concave (and downward) (i.e.
P′′ ≤ 0 and P′ < 0) and the cost function be C(qi ) = γqi + λ

2 q2
i , where γ ≥ 0 and λ ≥ 0 . Thus, the

more is λ, the more convex is the cost function C(qi ). The objective is to show ∂p
∂λ > 0.

The analysis is inline with the previous case. The profit of each (diverse) thermal producer
is updated by Πi = (qi + δR/2)P(Q + R) − C(qi ) = (qi + δR/2)P(Q + R) −

(
γqi + λ

2 q2
i

)
. The

FOC then gives ∂Πi

∂qi
= P(Q + R) + (qi + δR/2)P′(Q + R) −

(
γ + λqi

)
. Due to the symmetry (at

equilibrium) q1 = q2. Thus,

0 = P(Q + R) + (
1
2

)(Q + δR)P′(Q + R) −
(
γ + λ

Q
2

)
.

Taking a derivative with respect λ and rearranging terms imply

∂Q
∂λ

=
Q

3P′(Q + R) + (Q + δR)P′′(Q + R) − λ
< 0,

where the last inequality is because the inverse demand in downward and concave (i.e. P′ < 0 and
P′′ ≤ 0). Thus, with increasing convexity in the cost function aggregate production decreases. As a
result, since P is decreasing in Q (i.e. P′ < 0), thus the market price increases in λ, completing the
proof.

5.3 Welfare/Profit analysis

Here, we present two intuitive results about the impact of R and δ on each thermal producer’s profit.
We show diversified energy portfolios are always beneficial for thermal producers. However, the
profit consequences of increasing renewables for diversified thermal producers (i.e. δ > 0) crucially
depends on δ. That is, depending on the extent of δ, increasing renewable supply can be beneficial or
detrimental for thermal producers. In fact, our model suggests there exists a unique threshold δ∗ for
which when thermal producers have a low share from renewable outcome (i.e. δ < δ∗) their benefit
decreases with increasing renewable supply, but when their share is sufficiently high (i.e. δ > δ∗),
increasing renewable supply is actually beneficial for them.

Appendix-Proposition 1 The payoff of each non-diversified thermal producer monotonically de-
creases with increasing renewable supply on the grid, i.e. ∂Πi

∂R < 0 if δ = 0. However, the payoff of
each thermal producer always arises via diversification, i.e. ∂Πi

∂δ > 0.
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Proof of Appendix-Proposition 1 Due to Theorem 2, ∂p
∂δ =

βR
n+1 > 0, and ∂qi

∂δ =
−βR/n
(n+1)β thus

∂qi

∂δ + R
n = R

n (1 − 1
n+1 ) > 0. Moreover,

∂Πi

∂δ
=

∂p
∂δ︸︷︷︸
≥0

(
qi +

δR
n

)
+ p

(
∂qi
∂δ

+
R
n

)
︸        ︷︷        ︸

≥0

−γ
∂qi
∂δ︸  ︷︷  ︸
≥0

≥ 0.

Next, assume δ = 0. Thus, ∂p
∂R =

−β
n+1 < 0, and ∂qi

∂R = −1
(n+1) < 0. Moreover,

∂Πi

∂R
=
∂p
∂R

qi + p
∂qi
∂R
− γ

∂qi
∂R

=
−β

n + 1
qi + (p − γ)

−1
n + 1

< 0,

where the last inequality holds because p − γ > 0.

Appendix-Proposition 2 There exists a unique δ∗ ∈ (0,1) such that if δ < δ∗ then with increasing
renewable supply the profit of each diversified thermal producer decreases, i.e. ∂Πi

∂R < 0. However, if
δ > δ∗ then each diversified thermal producer will be better off with increasing renewable supply, i.e.
∂Πi

∂R > 0.

Proof of Appendix-Proposition 2 Due to symmetry, the profit of each thermal producer at the
equilibrium can be written as Πi = (qi + δR/n)p − γqi = 1

n

[
(Q + δR)p − γQ

]
, recall that Q =∑n

i=1 qi = nqi (at the equilibrium). Further, due to Theorem 2, p = 1
(n+1) (α + β(−R + δR) + nγ) and

Q = n
(n+1)β (α − γ − β(R + δR/n)). Plugging p and Q into the profit of the thermal producer i gives

Πi =
1
n

[
(Q + δR)p − γQ

]
=

1
βn(n + 1)

[
1

n + 1

(
α + β(−R + δR) + nγ

) (
n(α − γ) − β(nR + δR) + β(n + 1)δR

)
− γn

(
α − γ − β(R + δR/n)

)]

Let us define Λ ≡ [...] (note that the roots of ∂Πi

∂R and ∂Λ
∂R are equivalent). Thus,

∂Λ

∂R
=
β(δ − 1)

n + 1

(
n(α − γ) − β(nR + δR) + β(n + 1)δR

)
+
−β(δ + n) + (n + 1)δ β

n + 1

(
α + β(−R + δR) + nγ

)
+ γnβ

(
1 +

δ

n

)
≡ f (δ).

It is easy to see that f (δ) is quadratic in δ, thus it looks like f (δ) = xδ2 + yδ + z (where x, y, and z
are all independent of δ). First note that x =

2β2Rn
n+1 > 0, thus f (δ) is convex. Next we show f (δ) has

a unique zero lying between zero and one. To achieve this we show f (0) < 0 and f (1) > 0 (see the
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following figure) since f (δ) is continuous and quadratic thus has unique zero in (0,1).

f (0) = −β

(
n(α − γ) − βnR

n + 1

)
−

nβ
n + 1

(α − βR + nγ) + γnβ

=
−2nβ
n + 1

(α − γ − βR)

< 0

where the last inequality holds since α − γ − βR > 0.

f (1) = γnβ
(
1 +

1
n

)
> 0.

Figure 1: There exists a unique δ∗ ∈ (0,1) for which the behavior of Πi with respect to R switches.

1

δ=δ∗

δ
0

f(δ)

f(1)>0

0>f(0)

Since f (1) > 0 and f (0) < 0, thus there exists a unique δ∗ ∈ (0,1) for which f (δ∗) = 0.
As a result, ∂Πi

∂R |δ=δ∗ = 0, and consequently, ∂Πi

∂R |δ<δ∗ < 0 and ∂Πi

∂R |δ>δ∗ > 0, completing the proof.

6. PRICE VOLATILITY: GENERAL SPATIAL CONFIGURATIONS

In this section through examples we aim to consider the effect of general correlation structures on
the price volatility. Importantly, we show comparison of price volatility among different network
structures crucially depends on the way that the underlying structures are normalized. To this end, we
consider three normalizations as follows.

6.1 Normalization 1: Fixed distance between any neighboring plants

We consider path, cycle, barbell and complete network structures, depicted in the following figure.
We assume the distance between any two immediate neighbor plants is normalized to 1,

and in any network d(`i , ` j ) is the shortest distance between plants i and j within the network (thus
d(`i , `i ) = 0 for all i). We assume σ2 = 1. To capture that correlation in renewable supply at any two
plants, i.e. κi, j , decays with their distance we assume κi, j = ζd(`i,` j ) where 0 < ζ < 1 is the decay
factor and d(`i , ` j ) is the shortest distance between the plants. For example, the variance-covariance
matrix of the above Barbell and Path networks are as follows:
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Figure 2: Cycle, Complete, Path and Barbell network structures.
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ΣBarbell =

*.........
,

1 ζ ζ ζ2 ζ ζ2

ζ 1 ζ2 ζ ζ2 ζ

ζ ζ2 1 ζ3 ζ ζ3

ζ2 ζ ζ3 1 ζ3 ζ

ζ ζ2 ζ ζ3 1 ζ3

ζ2 ζ ζ3 ζ ζ3 1

+/////////
-

, ΣPath =

*.........
,

1 ζ ζ2 ζ3 ζ4 ζ5

ζ 1 ζ ζ2 ζ3 ζ4

ζ2 ζ 1 ζ ζ2 ζ3

ζ3 ζ2 ζ 1 ζ ζ2

ζ4 ζ3 ζ2 ζ 1 ζ

ζ5 ζ4 ζ3 ζ2 ζ 1

+/////////
-

.

In this section we assume β = 1. Applying Proposition 1 we can characterize the price volatility
for the above configurations. Figure 3 visualizes the price volatility of these networks when the
decay factor varies from 0 to 1, with different share for thermal producers from renewable supply,
i.e. δ. Consistent with Proposition 1 price volatility decreases with increasing δ. In addition price
volatility decreases with increasing the decay factor. This is because decay factor inversely related
to the distance between the plants. Thus, high decay factor means low distance among the plants,
decreasing the price volatility which is due to the lower misscoordinations among (close) competitors.
In addition, with changing the decay factor and δ, price volatility in these networks uniformly follows
a pattern that V arPath(p) ≥ V arCycle(p) ≥ V arBarbell(p) ≥ V arComplete(p).
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Figure 3: Price volatility in Cycle, Complete, Path and Barbell networks with respect to the decay factor
ζ ∈ (0,1) when thermal producers own some share from renewable outcome, i.e. δ = .3, .5, .7, .9. Price
volatility in the Path (Complete) structure is uniformly higher (lower) than the others.
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6.2 Normalization 2: The same distance for the farthest plants

For this normalization we compare Path and Barbell structures, given that the distance for their
farthest plants is the same. In the Path network the correlation between any two “neighboring” plants
is ζ , where ζ ∈ (0,1) is the decay factor. However, the Barbell network consists of two cliques
located far from each other. In each clique the correlation between any two neighbor plants is ζ . But,
since by this normalization, in the Path and Barbell networks the distance between the two farthest
plants should be the same, thus the correlation between the two farthest plants in these networks is
ζmaximum distance = ζ2n−1.

Figure 4: Path and Barbell networks. The same distance for the farthest plants.
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Now, suppose the decay factor changes from zero to one. Then, as shown in Figures 11 and
12, in contrast to the previous case, price volatility with this normalization does not change uniformly
in these network structures. In fact, when decay factor is small (i.e. low correlation in renewable
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supply for neighboring plants) price volatility in Path is higher than Barbel structures. But, when
decay factor is sufficiently high (i.e. high correlation in renewable supply for neighboring plants) then
price volatility in the Path structure is lower than the Barbell.

Figure 5: Barbell vs Path networks (Effect of distance). When nodes are close (i.e. high ζ), the price
volatility in the path network is lower. However when nodes are far (i.e. low ζ), the price volatility in the
barbell network is lower.
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Figure 6: Barbell vs Path networks (Effect of size). The same intuition as in the above.
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6.3 Normalization 3: The same total correlation

In this normalization we assume the total correlation in the underlying structures is the same, i.e.
1TΣstructure1 = fixed.

The construction is as follows. Let us start with a path network with 2n nodes. In the path
network the corresponding variance-covariance matrix (i.e. ΣPath) is such that (for a given decay
factor ζ ∈ (0,1)) the Cov(θi , θ j ) = ζdi j , where di j denotes the length of the shortest path from i to j
on the path.

ΣPath =

*........
,

1 ζ ζ2 · · · ζ2n−1

ζ 1 ζ · · · ζ2n−2

ζ2 ζ 1 · · · ζ2n−3

...
. . .

...

ζ2n−1 ζ2n−2 ζ2n−3 · · · 1

+////////
-

Next moving to the barbell and the complete networks, the constructions of their variance-
covariance matrices need to satisfy 1TΣComplete1 = 1TΣPath1 = 1TΣBarbell1 (resulting in normal-
ization in the total correlation). As a result, for the Barbell structure that consists of two cliques (each
with n nodes), the Cov(θi , θ j ) = qb if i , j and both belongs to a same clique, however, when i
and j are in different cliques then Cov(θi , θ j ) = αqb where α ∈ (0,1) and qb ≡

1T ΣPath1−2n
2n((α+1)n−1) . It can

be easily shown that with this qb , 1TΣPath1 and 1TΣBarbell1 will be equal. Following the same
argument, for the complete network we need to choose Cov(θi , θ j ) = qc where qc ≡

1T ΣPath1−2n
2n(2n−1)

(for all i , j), so as to have 1TΣComplete1 = 1TΣPath1.
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ΣComplete =

*........
,

1 qc · · · qc
qc 1 qc · · · qc
...

. . .
...

qc qc · · · 1 qc
qc · · · qc 1

+////////
-

= qc (U2n − I2n ) + I2n , qc =
1TΣPath1 − 2n

2n(2n − 1)

ΣBarbell =

(
Ab Cb

Cb Ab

)
, qb =

1TΣPath1 − 2n
2n((α + 1)n − 1)

, yb = αxb (α is exogenous and lies in(0,1))

where Ab = qb (Un − In ) + In and Cb = ybUn .
With the above constructions we can now compare price volatility in the above structures.

Importantly, as is evident from the following figure, with this normalization the price volatilities
in these structures (the red, green and the blue lines/dots) are all the same, implying that network
structure becomes actually ineffective. The solid black line is the price volatility for the barbell
network with the previous normalization in which the distance between its two farthest nodes is equal
to the distance between the two end nodes of the path network, taken as a way for the normalization.

Figure 7: Barbell vs Path vs Complete networks (Network structure becomes ineffective when they all
have the same total correlation). This figure visualizes the effect of total correlation on the price volatility
for different network structures.
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