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7. APPENDIX

7.1 Proof of Lemmata, Propositions, and Corollary

Proof. We show that gn ,1 = gm ,1 ,∀n,m = 1, . . . , N . The result that gn ,2 = gm ,2 ,∀n,m = 1, . . . , N

can be shown analogously and is excluded for brevity. Because of the assumed properties of the

inverse demand and cost functions, each generator’s profit-maximisation problem is convex. Thus,

the Karush-Kuhn-Tucker (KKT) conditions for gn ,1, which are:

−A1 + Z1 · (g
G
1 − Fd) + Z1gn ,1 + c′(gn ,1) − µn ,1 = 0 (17)

0 ≤ µn ,1 ⊥ gn ,1 ≥ 0, (18)

where µn ,1 is the Lagrange multiplier associated with generator n’s period-1 non-negativity con-

straint, are sufficient for a global optimum.

Subtracting condition (17) for generator m from that for generator n , m gives:

Z1 · (gn ,1 − gm ,1) + c′(gn ,1) − c′(gm ,1) − µn ,1 + µm ,1 = 0. (19)

Suppose for contradiction that the production levels are not symmetric and without loss of generality

that the generators are labelled such that gn ,1 > gm ,1. From condition (18) we must have µn ,1 = 0.

Thus, (19) becomes:

Z1 · (gn ,1 − gm ,1) + c′(gn ,1) − c′(gm ,1) + µm ,1 = 0,

which cannot hold because by assumption we have that Z1 · (gn ,1 − gm ,1) > 0, by convexity of the

cost function we have that c′(gn ,1) − c′(gm ,1) ≥ 0, and the KKT conditions require that µm ,1 ≥ 0.

This gives the desired contradiction, which proves the result. �

Proof. Assume for contradiction that (k∗ , d∗) is an optimal solution in which k∗
, d∗. By the

inequality constraint in the problem, we must have k∗ > d∗. Consider the alternate solution (k̃ , d∗),

with:

k̃ =
k∗ + d∗

2
.

This solution is clearly feasible in the problem constraint. Moreover, we have that:

[P (d∗) − (Ik∗2
)/2] − [P (d∗) − (I k̃2)/2] = I · (k̃2

− k∗2
)/2 < 0,

because by construction k̃ < k∗, meaning that (k̃ , d∗) gives a smaller objective-function value than

(k∗ , d∗), contradicting the optimality of (k∗ , d∗). �

Proof. To show the first part of the proposition, we compare the expressions in (7) and (12), which

gives that for k∗

W
to be greater than or equal to k∗

Π
we must have:

A2 − F A1 − BN · (F − 1)(N + 2)

I · (N + 1)2 + F2Z1 + Z2

≥
A2 − F A1 − BN · (F − 1)

I · (N + 1) + 2F2Z1 + 2Z2

,

which simplifies to:

Q(N ) = −N2
·
[

I · (A2 − F A1) + IB · (F − 1) + 2(F2Z1 + Z2)B · (F − 1)
]

−N ·
[

I · (A2 − F A1) + IB · (F − 1) + 3(F2Z1 + Z2)B · (F − 1)
]

+(A2−F A1)(F2Z1+Z2) ≥ 0.

Because the coefficients of N and N2 in Q(N ) are both negative, we have Q′′(N ) < 0,∀N

and Q′(0) < 0. Thus, Q(N ) is a downward-facing parabola. Furthermore, because Q(0) > 0, Q(N )
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has a unique positive root, N̄ . Hence, for N < N̄ , we have k∗

W
≥ k∗

Π
, otherwise, k∗

W
< k∗

Π
.

To show the second part of the proposition, we note that from (10) we have that:

W ′(k) = F
Z1

(N + 1)2

[

N
A1 − B

Z1

+ (2N + 1)Fk

]

+
Z2

(N + 1)2

[

(2N + 1)k − N
A2 − B

Z2

]

(20)

+(k∗

Π
− k)

I · (N + 1) + 2F2Z1 + 2Z2

N + 1
.

Substituting k∗

Π
into (20) gives:

W ′(k∗

Π
) = F

Z1

(N + 1)2

[

N
A1 − B

Z1

+ (2N + 1)Fk∗

Π

]

+
Z2

(N + 1)2

[

(2N + 1)k∗

Π
− N

A2 − B

Z2

]

=
Q(N )

(N + 1)2[I · (N + 1) + 2(F2Z1 + Z2)]
.

The denominator, (N + 1)2[I · (N + 1) + 2(F2Z1 + Z2)], is strictly positive. Thus, the only way for

W ′(k∗

Π
) to be positive (negative) is if N < N̄ (N > N̄). �

Proof. N̄ is defined as the root of the characteristic polynomial (cf. Proposition 1):

Q(N̄ ) = 0.

To show the first part of the proposition, we totally differentiate this defining equation with respect

to I , which gives:

∂

∂I
Q(N̄ ) +

∂

∂N
Q(N̄ )

∂ N̄

∂I
= 0.

This can be rewritten as:

∂ N̄

∂I
= −

∂
∂I

Q(N̄ )

∂
∂N

Q(N̄ )
. (21)

We have:
∂

∂I
Q(N̄ ) = −

(

N̄2 + N̄
)

[A2 − F A1 + B · (F − 1)] < 0,

and we also know (cf. the proof of Proposition 1) that Q′′(N ) < 0,∀N and Q′(0) < 0, meaning that:

∂

∂N
Q(N̄ ) < 0.

Thus, from (21) we have that:
∂ N̄

∂I
< 0,

which is the desired result.

To show the second part of the proposition, we totally differentiate Q(N̄ ) = 0 with respect

to B, which gives:

∂

∂B
Q(N̄ ) +

∂

∂N
Q(N̄ )

∂ N̄

∂B
= 0,

and which can be rewritten as:

∂ N̄

∂B
= −

∂
∂B

Q(N̄ )

∂
∂N

Q(N̄ )
.

We have that:

∂

∂B
Q(N̄ ) = −I · (F − 1) N̄ ·

(

N + 1
)

−
(

F2Z1 + Z2

)

(F − 1)N · (2N + 3) < 0,
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and we know that:
∂

∂N
Q(N̄ ) < 0.

Thus, we have:
∂ N̄

∂B
< 0,

which is the desired result. �

Proof. To show the impact of storage use on the price differential, we note that from (3) and (4) we

have:

p2(d) − Fp1(d) =
A2 − F A1 − BN · (F − 1) − d · (Z2 + F2Z1)

N + 1
. (22)

The coefficient on d:

−
Z2 + F2Z1

N + 1
,

is negative, meaning that the price differential decreases with storage use.

To show the impact of the number of generating firms on the price differential, we partially

differentiate (22) with respect to N , which gives:

∂

∂N
(p2(d) − Fp1(d)) = −

[p2(d) − Fp1(d) + B · (F − 1)]

N + 1
.

This partial derivative is negative. Thus, it follows that the price differential decreases with N . �

Proof. To, first, show the effect of the number of generating firms on the profit maximiser’s storage-

investment level, we partially differentiate (7) with respect to N , which gives:

∂

∂N
k∗

Π
= −

[A2 − F A1 − BN · (F − 1)]I

(I · (N + 1) + 2F2Z1 + 2Z2)2
−

B · (F − 1)

I · (N + 1) + 2F2Z1 + 2Z2

.

This partial derivative is strictly negative. Thus, it follows that the profit maximiser’s storage-

investment level decreases with the number of generating firms.

Next, to show the impact of the number of firms on the welfare maximiser’s storage-

investment level, we partially differentiate (12) with respect to N , giving:

∂

∂N
k∗

W = −
2[A2 − F A1 − BN · (F − 1)(N + 2)]I · (N + 1)

(I · (N + 1)2 + F2Z1 + Z2)2
−

2B · (F − 1)(N + 1)

I · (N + 1)2 + F2Z1 + Z2

.

This partial derivative is strictly negative, from which it follows that the welfare maximiser’s storage-

investment level decreases with the number of generating firms. �

Proof. We have:

W (k∗

Π
) −W (0) = −

1

2
IB · (F − 1)N3

−

[

2B · (F − 1)
(

F2Z1 + Z2

)

+ I ·

(

1

2
(A2 − F A1) + 2B(F − 1)

)]

N2

−

[

B · (F − 1)

(

3

2
I +

7

2

(

F2Z1 + Z2

)

)]

N +
1

2
(A2 − F A1)

[

I + 3
(

F2Z1 + Z2

)]

= S(N ).

S(N ) is a cubic polynomial, which is strictly positive and decreasing at N = 0. S(N ), therefore, has

exactly one positive root and either zero or two negative roots. Let Ñ denote the positive root of

S(N ). Ñ is the critical number of firms, above which no storage yields higher social welfare than

the profit maximiser’s storage-investment level. �

Proof. W (k∗

Π
) < W (0) means that an infinitesimal increase in the storage-investment level from k∗

Π

decreases social welfare. From Proposition 1, we know that this outcome is possible only when the
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number of firms is greater than N̄ . Hence, we must have that Ñ > N̄ when W (k∗

Π
) < W (0). �

7.2 Market Equilibria with Linear Marginal Generation Costs

Here, we investigate how storage investment is affected by linear marginal generation costs. All

modelling assumptions are the same as those that are in Sections 2–4, with the exception of the

generation cost. We now assume that generation costs have the quadratic form:

c(gn ,t ) = Bgn ,t +
1

2
NKg

2
n ,t , n = 1, . . . , N,

where B, K > 0.

We proceed with this analysis in four steps. We first derive the equilibrium production

levels of the generating firms in the two operating periods. Next, we determine equilibrium storage-

operation and -investment decisions for the profit- and welfare-maximising storage operators, re-

spectively. Finally, we find the benchmark generation and storage-related decisions if all of them are

made by a single social planner.

7.2.1 Generator Equilibrium

With linear marginal generation costs, generator n’s profit-maximisation problem becomes:

max
gn ,1 ,gn ,2≥0

P1(gG1 − Fd)gn ,1 − Bgn ,1 −
1

2
NKg

2
n ,1 + P2(gG2 + d)gn ,2 − Bgn ,2 −

1

2
NKg

2
n ,2 .

Because this is a convex optimisation problem, its KKT conditions, which are:

0 ≤ −A1 + Z1 · (g
G
1 − Fd) + Z1gn ,1 + B + NKgn ,1 ⊥ gn ,1 ≥ 0,

and:

0 ≤ −A2 + Z2 · (g
G
2 + d) + Z2gn ,2 + B + NKgn ,2 ⊥ gn ,2 ≥ 0,

are sufficient for a global optimum. We can appeal to Lemma 1 to conclude that the equilibrium

production levels of the generators are symmetric in each of the two periods. Adding the assumption

that we have an interior solution (otherwise we have g
G
t = 0 in at least one period, which is an

uninteresting case), gives:

g
G
1 (d) =

N · (A1 + Z1Fd − B)

L1

, (23)

and:

g
G
2 (d) =

N · (A2 − Z2d − B)

L2

, (24)

as the aggregate production levels of the generators in the two periods, where we define:

L1 = Z1 · (N + 1) + NK,

and:

L2 = Z2 · (N + 1) + NK.

We finally substitute these aggregate production levels into the period-1 and-2 inverse de-

mand function to obtain equilibrium prices:

p1(d) =
(A1 + Z1Fd)(Z1 + NK ) + Z1BN

L1

, (25)
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and:

p2(d) =
(A2 − Z2d)(Z2 + NK ) + Z2BN

L2

, (26)

in the two periods.

7.2.2 Investment and Operating Equilibrium of Profit-Maximising Storage Operator

We analyse the behaviour of a profit-maximising storage operator by first examining its operating

decisions, which are governed by the profit-maximisation problem:

max
d

d · [p2(d) − Fp1(d)]

s.t. 0 ≤ d ≤ k , (µ)

where µ is the Lagrange multiplier associated with the storage-capacity constraint and we use (25)

and (26) as the prices in the two periods. Because p1(d) and p2(d) depend on d linearly, this profit-

maximisation is convex and its KKT conditions are necessary and sufficient for a global optimum.

This storage operator’s problem has the KKT conditions:

0 ≤ −(p2(d) − Fp1(d)) − dp′2(d) + dFp′1(d) + µ ⊥ d ≥ 0,

0 ≤ k − d ⊥ µ ≥ 0,

which yields the same solution that is given in (5), with the caveat that we use the price functions

that are given by (25) and (26), as opposed to (3) and (4).

Turning to the storage operator’s investment decision, this is determined by the profit-

maximisation problem:

max
k

[p2(k) − Fp1(k)]k − (Ik2)/2,

where by Lemma 2 we know that storage is fully utilised in the operating stage, meaning that d = k.

We further assume that we have an interior solution, in which storage capacity is built (i.e., that the

non-negativity constraint, k ≥ 0, is non-binding). The sufficient KKT condition for this problem is:

−p2(k) + Fp1(k) + Ik − kp′2(k) + Fkp′1(k) = 0.

Substituting (25) and (26), respectively, for the periods-1 and -2 price functions and solving gives:

k∗

Π
=

L1 · [A2 · (Z2 + NK ) + Z2BN] − FL2 · [A1 · (Z1 + NK ) + Z1BN]

IL1L2 + 2F2Z1L2 · (Z1 + NK ) + 2Z2L1 · (Z2 + NK )
, (27)

as the profit maximiser’s storage-investment level.

7.2.3 Investment and Operating Equilibrium of Welfare-Maximising Storage Operator

We analyse the case of a welfare-maximising storage operator in the same way that we do in the case

of constant marginal generation costs. We begin by first deriving expressions for periods-1 and -2

consumer welfare, which are:

WC
1 (k) =

∫ gG

1 (k)−Fk

0

[P1(x) − p1(k)]dx =
1

2
Z1 · [g

G
1 (k) − Fk]2 ,

and:

WC
2 (k) =

∫ gG

2 (k)+k

0

[P2(x) − p2(k)]dx =
1

2
Z2 · [g

G
2 (k) + k]2 ,
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respectively. These expressions are all written as functions of k, because we know from Lemma 2

that d = k in a welfare-maximising equilibrium. Periods-1 and -2 producer welfare are, similarly:

WG
1 (k) = g

G
1 (k) ·

[

p1(k) − B −
1

2
Kg

G
1 (k)

]

=
2Z1 + NK

2N
g
G
1 (k)2 ,

and:

WG
2 (k) = g

G
2 (k) ·

[

p2(k) − B −
1

2
Kg

G
2 (k)

]

=
2Z2 + NK

2N
g
G
2 (k)2 ,

respectively. The welfare of the storage operator is given by:

W S (k) = (2k∗

Π
− k)k

IL1 L2/2 + F2Z1L2 · (Z1 + NK ) + Z2L1 (Z2 + NK )

L1L2

,

where k∗

Π
is the value that is given by (27). Thus, substituting (23) and (24) for gG

1
(d) and g

G
2

(d),

we have:

W ′(k) = F Z1

L2
2
·
{

Z1 N · (A1 − B) + F ·
[

Z2
1

(2N + 1) + Z1NK · (N + 2) + N2K2
]

k
}

L2
1
L2

2
(28)

+Z2

L2
1
·
[

−Z2N · (A2 − B) +
[

Z2
2

(2N + 1) + Z2 NK · (N + 2) + N2K2
]

k
]

L2
1
L2

2

+(k∗

Π
− k)















I + 2

[

F2Z1L1L2
2
· (Z1 + NK ) + Z2L2

1
L2 · (Z2 + NK )

]

L2
1
L2

2















.

Assuming that we have an interior solution (i.e., that k > 0), the investment problem can

be written as:

max
k

[WC
1 (k) −WC

1 (0)] + [WC
2 (k) −WC

2 (0)] + [WG
1 (k) −WG

1 (0)] + [WG
2 (k) −WG

2 (0)] +W S (k),

which is a convex quadratic program. Using (28), the sufficient KKT condition gives:

k∗

W =
A2L2

1
J2 − F A1L2

2
J1 + BN ·

[

Z2L2
1
· (L2 + Z2) − F Z1L2

2
· (L1 + Z1)

]

IL2
1
L2

2
+ F2Z1L2

2
·
[

Z2
1
+ Z1κ + N2K2

]

+ Z2L2
1
·
[

Z2
2
+ Z2κ + N2K2

] ,

as the welfare maximiser’s storage-investment level, where:

J1 = (Z1 + NK )2 + Z1 N2K,

J2 = (Z2 + NK )2 + Z2 N2K,

and:

κ = NK · (N + 2).

7.2.4 Benchmark Central Planner’s Problem

We know from Section 4, and (16) in particular, that building storage is suboptimal for a social

planner with constant marginal generation costs. This may not be the case, however, with linear

marginal generation costs. As a benchmark, we consider the following problem:

max
g1 ,g2 ,k≥0

A1(g1−Fk)−
Z1

2
(g1−Fk)2+A2(g2+k)−

Z2

2
(g2+k)2

−B · (g1+g2)−
K

2

(

g
2
1 + g

2
2

)

−
1

2
Ik2 ,
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in which a welfare-maximising central planner owns and operates all generation and storage facil-

ities. This is a convex quadratic optimisation problem, thus its KKT conditions are sufficient for

a global optimum. Assuming an interior solution (i.e., that generation levels are non-zero in both

periods and that some energy storage is built), the KKT conditions give the optimal solution:

g
P
1 =

A1 − B

Z1 + K

+
F Z1

Z1 + K
·
K · [A2 · (Z1 + K ) − F A1 · (Z2 + K )] − B · [Z1 Z2 · (F − 1) − K · (Z2 − F Z1)

I · (Z1 + K )(Z2 + K ) + K · [Z2 · (Z1 + K ) + F2Z1 · (Z2 + K )]
,

g
P
2 =

A2 − B

Z2 + K

−
Z2

Z2 + K
·
K · [A2 · (Z1 + K ) − F A1 · (Z2 + K )] − B · [Z1Z2 · (F − 1) − K · (Z2 − F Z1)]

I · (Z1 + K )(Z2 + K ) + K · [Z2 · (Z1 + K ) + F2Z1 · (Z2 + K )]
,

and:

kP =
K · [A2 · (Z1 + K ) − F A1 · (Z2 + K )] − B · [Z1Z2 · (F − 1) − K · (Z2 − F Z1)]

I · (Z1 + K )(Z2 + K ) + K · [Z2 · (Z1 + K ) + F2Z1 · (Z2 + K )]
.

kP is positive so long as the linear portion of the marginal generation cost is relatively high,

i.e., if K · (gP
2
− FgP

1
) > B · (F − 1). Hence, due to the linear marginal generation cost, storage may

be required even under central planning because it enables the substitution of relatively inexpensive

generation that is stored off-peak to displace higher-cost generation in the on-peak period.
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