Appendix: Market Power with Tradable Performance-Based CO_2 Emission Standards in the Electricity Sector

Yihsu Chen^{*} Makoto Tanaka[†] Afzal S. Siddiqui[‡]

Appendix A Proofs of Propositions

Proof of Proposition 3.1

Noting the assumption that $E_i < F < E_j$, we have $a' = -\frac{(F-E_1)}{F-E_2} > 0$, and $b' = \frac{E_1-E_2}{F-E_2} > 0$. Recall also the assumption that $p' < 0, p'' \le 0, c'_i > 0$, and $c''_i \ge 0$. Let $m^*(g_1)$ denote the left-hand side of Eq. (6). We first calculate the derivative of $m^*(g_1)$:

$$m^{*'}(g_1) = p'b' - c_1'' - (E_1 - F)f'$$

= $p'b' - c_1'' - \frac{(E_1 - F)}{E_2 - F} (p'b' - c_2''a')$
< 0. (A-1)

Thus, $m^*(g_1)$ is strictly decreasing, and g_1^* , which is a solution to $m^*(g_1) = 0$ (or Eq. (6)), is unique if an interior solution exists. Next, let $m^c(g_1)$ denote the left-hand-side of Eq. (10) and calculate the derivative as follows:

$$m^{c'}(g_1) = p'b' + p' + g_1p''b' - c_1'' - (E_1 - F)h'$$

= $p'b' + p' + g_1p''b' - c_1'' - \frac{(E_1 - F)}{E_2 - F} \left(p'b' + ap''b' + p'a' - c_2''a'\right)$ (A-2)
< 0.

Hence, $m^c(g_1)$ is strictly decreasing, and g_1^c , which is a solution for $m^c(g_1) = 0$ (or Eq.(10)), is unique if an interior solution exists. We now compare g_1^* and g_1^c by calculating the following:

$$m^{c}(g_{1}) - m^{*}(g_{1}) = p'g_{1} - (h - f)(E_{1} - F)$$

= $p'g_{1} - \frac{(E_{1} - F)}{E_{2} - F}ap'$
< 0. (A-3)

^{*}Corresponding author. Associate Professor, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA, United States. Email: yihsuchen@ucsc.edu.

[†]Professor, National Graduate Institute for Policy Studies (GRIPS), Tokyo, Japan. Email: mtanaka@grips.ac.jp.

[‡]Professor, Department of Statistical Science, University College London, United Kingdom, Professor, Department of Computer and Systems Sciences, Stockholm University, Sweden, and Affiliated Professor, Department of Decision Sciences, HEC Montréal, Canada. Email: afzal.siddiqui@ucl.ac.uk.

Since $m^c(g_1) < m^*(g_1)$, we obtain $g_1^c < g_1^*$. We then compare g_1^c and g_1^s with the assumption of interior solutions by calculating the following:

$$m^{s}(g_{1}) - m^{c}(g_{1}) = g_{1}(b'-1)p' - (E_{1}-F)g_{1}h'$$

= $-\frac{(E_{1}-F)}{E_{2}-F} \left(p'+p'b'+ap''b'+p'a'-c_{2}''a'\right)g_{1}$ (A-4)
< 0.

It follows from $m^s(g_1) < m^c(g_1)$ that $g_1^s < g_1^c$ holds for any interior solutions. We, thus, obtain $g_1^s < g_1^c < g_1^s$. Since a' > 0, $g_2 = a(g_1)$ is strictly increasing. We, thus, have $g_2^s < g_2^c < g_2^s$.

Proof of Proposition 3.2

It is straightforward from Proposition 3.1 that $g^s < g^c < g^*$. Since p' < 0, p(g) is strictly decreasing. Hence, $p^s > p^c > p^*$ holds.

Proof of Proposition 3.3

From Eq. (2), $e = E_1g_1 + E_2g_2 = Fg$. Hence, e, which is a function of g, is strictly increasing since e' = F > 0. It follows from this and Proposition 3.2 that $e^s < e^c < e^*$. \Box

Appendix B Nomenclature

Indices and Sets

 Γ : upper-level decision variables

- Ξ : lower-level primal decision variables
- Ψ : lower-level dual variables
- Φ : decision variables for MILP
- $i \in \mathcal{I}$: power producers
- s: strategic producer index
- $j \in \mathcal{J}$: non-strategic producers¹
- $k \in \mathcal{K}$: discrete generation level
- $\ell \in \mathcal{L}$: transmission lines
- $n', n \in \mathcal{N}$: power network nodes

 $u', u \in \mathcal{U}_{n,i}$: generation units of producer $i \in \mathcal{I}$ at network node $n \in \mathcal{N}$

Parameters

 $B_{n,n'}: \text{ element } (n,n') \text{ of node susceptance matrix, where } n,n' \in \mathcal{N} (1/\Omega)$ $C_{n,i,u}: \text{ generation cost of unit } u \in \mathcal{U}_{n,i} \text{ from producer } i \in \mathcal{I} \text{ at node } n \in \mathcal{N} (\$/\text{MW})$ $D_n^{\text{int}}: \text{ intercept of linear inverse demand function at node } n \in \mathcal{N} (\$/\text{MW})$ $D_n^{\text{slp}}: \text{ slope of linear inverse demand function at node } n \in \mathcal{N} (\$/\text{MW}^2)$ $E_{n,i,u}: \text{ CO}_2 \text{ emission rate of unit } u \in \mathcal{U}_{n,i} \text{ from producer } i \in \mathcal{I} \text{ at node } n \in \mathcal{N} (t/\text{MWh})$ $F: \text{ regulated CO}_2 \text{ emissions rate under performance (rate)-based policy (t/\text{MW})}$ $F: \text{ regulated CO}_2 \text{ emissions cap under mass-based policy (t)}$ $G_{n,i,u}: \text{ maximum generation capacity of unit } u \in \mathcal{U}_{n,i} \text{ from producer } i \in \mathcal{I} \text{ at node } n \in \mathcal{N} (MW)$ $H_{\ell,n}: \text{ element } (\ell, n) \text{ of network transfer matrix, where } \ell \in \mathcal{L} \text{ and } n \in \mathcal{N} (1/\Omega)$ $\overline{}^1\mathcal{J} \cap \{s\} = \emptyset, \mathcal{J} \cup \{s\} = \mathcal{I}}$

 K_{ℓ} : maximum capacity of power line $\ell \in \mathcal{L}$ (MW)

 $\overline{G}_{n,s,u,k}$: discrete generation level $k \in \mathcal{K}$ of strategic producer's unit $u \in \mathcal{U}_{n,s}$ located at node $n \in \mathcal{N}$ (MW)

 $\overline{E}_{n,s,u,k}$: discrete CO₂ emissions associated with discrete generation level $k \in \mathcal{K}$ of strategic producer's unit $u \in \mathcal{U}_{n,i}$ located at node $n \in \mathcal{N}$ (t)

 $M^{\lambda}, M^{p}, M^{y}, M, \overline{M}, \dot{M}, \dot{M}, \dot{M}, \underline{M}$: large constants used in disjunctive constraints and binary expansion

Primal Variables

 $g_{n,i,u}$: generation at node $n \in \mathcal{N}$ by producer $i \in \mathcal{I}$ using unit $u \in \mathcal{U}_{n,i}$ (MW)

 d_n : consumption at node $n \in \mathcal{N}$ (MW)

 v_n : voltage angle at node $n \in \mathcal{N}$ (rad)

 $y_{n,s,u,k}$: strategic generator's electricity sales revenue at node $n \in \mathcal{N}$ using unit $u \in \mathcal{U}_{n,s}$ at generation level $k \in \mathcal{K}$ (\$)

 $z_{n,s,u,k}$: strategic generator's CO₂ permit revenue (or cost) at node $n \in \mathcal{N}$ using unit $u \in \mathcal{U}_{n,s}$ at generation level $k \in \mathcal{K}$ (\$)

 $q_{n,s,u,k}^y$: auxiliary variable to linearize the strategic generator's objective function with respect to electricity sales at node $n \in \mathcal{N}$ using unit $u \in \mathcal{U}_{n,s}$ at generation level $k \in \mathcal{K}$ $p_{n,s,u,k}$: auxiliary variable used to associate CO₂ permit price for the output level of producer at node $n \in \mathcal{N}$ using unit $u \in \mathcal{U}_{n,s}$ at generation level $k \in \mathcal{K}$ (\$/t)

Dual Variables

 $\beta_{n,i,u}$: shadow price on generation capacity at node $n \in \mathcal{N}$ for generation unit $u \in \mathcal{U}_{n,i}$ of producer $i \in \mathcal{I}$ (\$/MW)

 $\overline{\mu}_{\ell}, \underline{\mu}_{\ell}$: shadow prices on transmission capacity for transmission line $\ell \in \mathcal{L}$ (\$/MW) λ_n : market-clearing price at node $n \in \mathcal{N}$ (\$/MW)

 ν : hub price (\$/MW)

 ρ : shadow price on emissions rate (\$/t)

Integer Variables

 q_n^{λ} : auxiliary variable used to indicate whether market-clearing price at node $n \in \mathcal{N}$ is positive

 $q_{n,s,u,k}$: auxiliary variable used to discretize the strategic generator's electricity generation at node $n \in \mathcal{N}$ using unit $u \in \mathcal{U}_{n,s}$ at generation level $k \in \mathcal{K}$

 $\overline{r}_{n,j,u}$: auxiliary variable used to handle the Karush-Kuhn-Tucker (KKT) condition with respect to non-strategic producer $j \in \mathcal{J}$'s generation at node $n \in \mathcal{N}$ using unit $u \in \mathcal{U}_{n,j}$ and $g_{n,j,u}$

 r_n : auxiliary variable used to handle the KKT condition with respect to consumption at node $n \in \mathcal{N}$ and d_n

 $\check{r}_{n,j,u}$: auxiliary variable used to handle complementarity condition between generation constraint of non-strategic producer $j \in \mathcal{J}$'s unit $u \in \mathcal{U}_{n,j}$ located at node $n \in \mathcal{N}$ and shadow price of generation capacity

 \hat{r}_{ℓ} : auxiliary variable used to handle the complementarity condition between transmission line ℓ 's capacity constraint and the shadow price in positive direction

 \tilde{r}_{ℓ} : auxiliary variable used to handle the complementarity condition between transmission line ℓ 's capacity constraint and the shadow price in negative direction

<u>r</u>: auxiliary variable used to handle the complementarity condition between the emissions constraint and the CO₂ price

Appendix C KKT Conditions for Lower-Level Equilibrium Problem

$$0 \leq g_{n,j,u} \perp D_n^{\mathrm{slp}} \sum_{u' \in \mathcal{U}_{n,j}} g_{n,j,u'} + C_{n,j,u} + \beta_{n,j,u} - \lambda_n + \rho \left(E_{n,j,u} - F \right) \geq 0, \forall n, \forall j, \forall u \in \mathcal{U}_{n,j}$$
(C-5)

$$0 \le d_n \perp -D_n^{\text{int}} + D_n^{\text{slp}} d_n + \lambda_n \ge 0, \forall n \tag{C-6}$$

$$\sum_{\ell \in \mathcal{L}} \overline{\mu}_{\ell} H_{\ell,n} - \sum_{\ell \in \mathcal{L}} \underline{\mu}_{\ell} H_{\ell,n} - \sum_{n' \in \mathcal{N}} (\lambda_{n'} - \nu) B_{n',n} = 0 \text{ with } v_n \text{ u.r.s.}, \forall n$$
(C-7)

$$0 \le \beta_{n,j,u} \perp G_{n,j,u} - g_{n,j,u} \ge 0, \,\forall n, \forall j, \forall u \in \mathcal{U}_{n,j}$$
(C-8)

$$0 \le \overline{\mu}_{\ell} \perp K_{\ell} - \sum_{n \in \mathcal{N}} H_{\ell,n} v_n \ge 0 , \, \forall \ell$$
(C-9)

$$0 \le \underline{\mu}_{\ell} \perp K_{\ell} + \sum_{n \in \mathcal{N}} H_{\ell,n} v_n \ge 0 , \, \forall \ell$$
(C-10)

$$d_n - \sum_{i \in \mathcal{I}} \sum_{u \in \mathcal{U}_{n,i}} g_{n,i,u} + \sum_{n' \in \mathcal{N}} B_{n,n'} v_{n'} = 0 \text{ with } \lambda_n \text{ u.r.s., } \forall n$$
(C-11)

$$\sum_{n \in \mathcal{N}} \sum_{n' \in \mathcal{N}} B_{n,n'} v_{n'} = 0 \text{ with } \nu \text{ u.r.s.}$$
(C-12)

$$0 \le \rho \perp \sum_{n \in \mathcal{N}} \sum_{i \in \mathcal{I}} \sum_{u \in \mathcal{U}_{n,i}} \left(F - E_{n,i,u} \right) g_{n,i,u} \ge 0 \tag{C-13}$$

Appendix D MILP Reformulation

The complementarity conditions in Eqs. (C-5)–(C-6), (C-8)–(C-10), and (C-13) can be converted to disjunctive constraints using sufficiently large constants (Fortuny-Amat and McCarl, 1981; Gabriel and Leuthold, 2010). Another computational difficulty is the bilinear terms, $\lambda_n g_{n,s,u}$ and $\rho (E_{n,s,u} - F) g_{n,s,u}$, in Eq. (17a). We apply binary expansion to linearize those bilinear terms (Barroso et al., 2006; Gabriel and Leuthold, 2010). Taking discrete generation level k of strategic producer's unit $u \in \mathcal{U}_{n,i}$ located at node $n \in \mathcal{N}$, i.e., $\overline{G}_{n,s,u,k}$, we consider the following linearization.

$$y_{n,s,u,k} = \begin{cases} \lambda_n \overline{G}_{n,s,u,k} & \text{if } q_{n,s,u,k} = q_n^{\lambda} = 1\\ 0 & \text{otherwise} \end{cases}$$
(D-1)

$$z_{n,s,u,k} = \begin{cases} \rho \left(E_{n,s,u} - F \right) \overline{G}_{n,s,u,k} & \text{if } q_{n,s,u,k} = \underline{r} = 1 \\ 0 & \text{otherwise} \end{cases}$$
(D-2)

If generation level $\overline{G}_{n,s,u,k}$ is selected and power price λ_n is positive, then we have the strategic generator's electricity sales revenue, $y_{n,s,u,k}$. Moreover, if generation level $\overline{G}_{n,s,u,k}$ is selected and the CO₂ allowance price ρ is positive, then we have strategic generator's

 CO_2 permit revenue (or cost), $z_{n,s,u,k}$. Our formulation is an extension of Gabriel and Leuthold (2010) in which one type of bilinear term was considered.

$$\operatorname{Maximize}_{\Phi} \sum_{n \in \mathcal{N}} \sum_{u \in \mathcal{U}_{n,s}} \left(\sum_{k \in \mathcal{K}} y_{n,s,u,k} - \sum_{k \in \mathcal{K}} z_{n,s,u,k} - C_{n,s,u} g_{n,s,u} \right)$$
(D-3)

s.t.
$$(C-7), (C-11), (C-12)$$

 $0 \le \lambda \le M^{\lambda} a^{\lambda} \quad \forall n$
(D-4)

$$g_{n,s,u} = \sum q_{n,s,u,k} \overline{G}_{n,s,u,k}, \quad \forall n, \forall u \in \mathcal{U}_{n,s}$$
(D-5)

$$\sum_{k \in \mathcal{K}} q_{n,s,u,k} = 1, \ \forall n, \forall u \in \mathcal{U}_{n,s}$$
(D-6)

$$\overline{k \in \mathcal{K}} q_{n,s,u,k}^y \le q_n^\lambda, \ \forall n, \forall u \in \mathcal{U}_{n,s}, \forall k$$
(D-7)

$$q_{n,s,u,k}^{y} \le q_{n,s,u,k}, \quad \forall n, \forall u \in \mathcal{U}_{n,s}, \forall k$$
(D-8)

$$q_{n,s,u,k} + q_n^{\lambda} - 1 \le q_{n,s,u,k}^y, \quad \forall n, \forall u \in \mathcal{U}_{n,s}, \forall k$$
(D-9)

$$y_{n,s,u,k} \le \lambda_n \overline{G}_{n,s,u,k}, \quad \forall n, \, \forall u \in \mathcal{U}_{n,s}, \, \forall k \tag{D-10}$$

$$0 \le y_{n,s,u,k} \le M^y q_{n,s,u,k}^y, \ \forall n, \forall u \in \mathcal{U}_{n,s}, \forall k$$
(D-11)

$$0 \le p_{n,s,u,k} \le M^p q_{n,s,u,k}, \quad \forall n, \, \forall u \in \mathcal{U}_{n,s}, \, \forall k \tag{D-12}$$

$$\sum_{k \in \mathcal{K}} p_{n,s,u,k} = \rho, \quad \forall n, \, \forall u \in \mathcal{U}_{n,s}$$
(D-13)

$$-\left(\overline{E}_{n,s,u,k} - F\overline{G}_{n,s,u,k}\right)p_{n,s,u,k} + z_{n,s,u,k} \ge 0, \quad \forall n, \forall u \in \mathcal{U}_{n,s}, \forall k$$
(D-14)

$$0 \le -D_n^{\text{int}} + D_n^{\text{slp}} d_n + \lambda_n \le M r_n, \quad \forall n \tag{D-15}$$

$$0 \le d_n \le M \left(1 - r_n \right), \ \forall n \tag{D-16}$$

$$0 \le D_n^{\text{slp}} \sum_{u' \in \mathcal{U}_{n,j}} g_{n,j,u'} + C_{n,j,u} - \lambda_n + \beta_{n,j,u} \le \overline{M}\overline{r}_{n,j,u}, \quad \forall n, j, u \in \mathcal{U}_{n,j} \quad (D-17)$$

$$0 \le g_{n,j,u} \le \overline{M} \left(1 - \overline{r}_{n,j,u} \right), \quad \forall n, j, u \in \mathcal{U}_{n,j}$$
(D-18)

$$0 \le K_{\ell} - \sum_{n} H_{\ell,n} v_n \le \hat{M} \hat{r}_{\ell}, \quad \forall \ell$$
(D-19)

$$0 \le \overline{\mu}_{\ell} \le \hat{M} \left(1 - \hat{r}_{\ell} \right), \quad \forall \ell \tag{D-20}$$

$$0 \le K_{\ell} + \sum_{n} H_{\ell,n} v_n \le \tilde{M} \tilde{r}_{\ell}, \quad \forall \ell$$
(D-21)

$$0 \le \underline{\mu}_{\ell} \le \tilde{M} \left(1 - \tilde{r}_{\ell} \right), \quad \forall \ell \tag{D-22}$$

$$0 \leq -g_{n,j,u} + \overline{G}_{n,j,u} \leq \check{M}\check{r}_{n,j,u}, \ \forall n, j, u \in \mathcal{U}_{n,j}$$
(D-23)

$$0 \le \beta_{n,j,u} \le \mathring{M} \left(1 - \check{r}_{n,j,u} \right), \quad \forall n, j, u \in \mathcal{U}_{n,j}$$
(D-24)

$$0 \le \sum_{n \in \mathcal{N}} \sum_{i \in \mathcal{I}} \sum_{u \in \mathcal{U}_{n,i}} \left(F - E_{n,i,u} \right) g_{n,i,u} \le \underline{M}(1 - \underline{r}) \tag{D-25}$$

$$0 \le \rho \le \underline{Mr} \tag{D-26}$$

$$\underline{r} \in \{0,1\}; r_n \in \{0,1\}, \ \forall n; \overline{r}_{n,j,u} \in \{0,1\}, \check{r}_{n,j,u} \in \{0,1\}, \ \forall n, j, u \in \mathcal{U}_{n,j};$$
$$\hat{r}_{\ell} \in \{0,1\}, \ \tilde{r}_{\ell} \in \{0,1\} \ \forall \ell \tag{D-27}$$

$$q_n^{\lambda} \in \{0, 1\} \ \forall n; q_{n,s,u,k} \in \{0, 1\}, q_{n,s,u,k}^{y} \in [0, 1] \ \forall n, \forall u \in \mathcal{U}_{n,s}, \forall k$$
(D-28)

where we define: $\Phi = \{ d_n, g_{n,i,u}, v_n, \lambda_n, \nu, \overline{\mu}_{\ell}, \underline{\mu}_{\ell}, \beta_{n,j,u}, \rho, \underline{r}, r_n, \overline{r}_{n,j,u}, \check{r}_{\ell}, \tilde{r}_{\ell}, y_{n,s,u,k}, z_{n,s,u,k}, q_{n,s,u,k}, q_n^{\lambda}, q_{n,s,u,k}^{\lambda}, p_{n,s,u,k}, p_{n,s,u,k} \}.$

References

- Barroso, L.A., R.D. Carneiro, S. Granville, M.V. Pereira, and M.H.C. Fampa (2006). "Nash Equilibrium in Strategic Bidding: a Binary Expansion Approach." *IEEE Transactions on Power Systems*. 21(2): 629–638.
- Fortuny-Amat, J. and B. McCarl (1981). "A Representation and Economic Interpretation of a Two-Level Programming Problem." The Journal of the Operational Research Society. 32(9): 783–792.
- Gabriel, S. A. and F.U. Leuthold (2010). "Solving Discretely-Constrained MPEC Problems with Applications in Electric Power Markets." *Energy Economics.* 32: 3–14.