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APPENDIX A. Summary: Structure and Features of Selected Energy Modeling Frameworks with Technical Change

Model/Study Top-Down
Economic 

(e.g., Stylized
Energy-Power

Sector)

Bottom-Up Engineering Cost 
(e.g., Power Sector Technology

Detail)

Uncertainty
Focus

(e.g., Stylized
Innovation
Process or

Power Sector)No R&D
Decisions

Stylized R&D 
(e.g., Linear)

Hybrid with
R&D 

(e.g., Stylized 
Power Sector
Operations)

Goulder & Schneider 1999
X

Van der Zwaan, Gerlagh, Klaassen & Schrattenholzer 2002 (DEMETER) X
Buonanno, Carraro & Galeotti 2003 (ETC-RICE) X

Popp 2004 and Popp 2006 (ENTICE) X
Nordhaus 2010 (RICE) X
Ross 2008 (ADAGE) X

Pugh et al. 2011 X
Short et al. 2011 (NREL ReEDS) X

Messner 1997 (MESSAGE) X
Mattheson & Wene 1997 (GENIE) X

Loulou, Goldstein & Noble 2004 (MARKAL) X
US Energy Information Administration 2009 (NEMS) X

Seebregts et al. 1999 (MARKAL) X
Kouvaritakis, Soria & Isoard 2000 (POLES)

Barreto & Kypreos 2004 (ERIS) X
Manne, Mendelsohn & Richels 1995 (MERGE) X

Bosetti et al. 2006 (WITCH) X
Blanford 2009 X

Baker & Solak 2011 X
Ybema et al. 1998 X

Bosetti & Tavoni 2009 X X
Kypreos, Barreto, Capros & Messner 2000 X X
Messner, Golodnikov & Gritsevskii 1996 X

Grubler & Gritsevskii 2012 X
Webster, Fisher-Vanden, Popp & Santen (2015) X X

Notes: Section 2 of the paper includes definitions of each category.
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APPENDIX B. Full Formulation of the Electricity Generation Capital and R&D Investment Planning Model

Indices and exogenous parameters

t period 
g generation technology category

g* dispatchable technology categories
g** non-dispatchable technology categories
g*** no new build technology categories 
g**** emerging (learning) technologies

d demand slice
r annual discount rate
fix_om_rateg fixed O&M cost for technology g
durationd length (in hours) for demand slice d
fuel_costg,0 initial fuel cost for technology g
fuel_growth_rate g annual fuel cost growth rate for technology g
var_om_rateg variable O&M cost for technology g
hebscaleg knowledge stock scaling parameter for technology g
retire_rateg per period retirement rate for technology g
CAPCOSTg,0 initial capital cost for technology g
η1g learning-by-doing elasticity for technology g
η2g learning-by-searching elasticity for technology g
αg, βg, ϕg innovation possibilities frontier parameters for technology g
δg per period knowledge stock discount rate for technology g
demandd power level (gigawatts) for demand slice d
emission_rateg carbon emission rate for technology g
ecap cumulative carbon emissions cap
availability_rateg availability rate (including maintenance & outages) for 

technology g
demand_peak power level (gigawatts) for peak demand slice
k annual demand growth rate
reserve_margin reserve margin (%) for electricity reliability
initial_capacityg initial installed capacity for technology g
install_uprateg**** maximum installed capacity rate of change between periods for emerging technologies

Exogenous variables

RRt accumulated social discount factor in time t
KKt accumulated demand growth factor in time t
FPg,t accumulated fuel cost growth factor in time t for technology g

Endogenous variables

RDg,t R&D investment for technology g in period t
NCg,t new capital installations for technology g in period t
IC,t cumulative installed capacity for technology g in period t
FCt total fixed costs in period t
VCg,t variable costs for technology g in period t
TOTAL_CAPCOSTg,t capital investment costs for technology g in period t
TOTAL_FIX_OMg,t total fixed O&M costs for technology g in period t
PWROUTd,g,t total electricity generation for technology g in demand slice d in 
Et total emissions in period t
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CAPCOSTg,t capital cost for technology g in time period t
NEWKg,t new human knowledge for technology g in period t
KSg,t human knowledge stock for technology g in period t 
NETLOADd,t                       net electricity demand (total demand less non-dispatchable generation

technologies) in demand slice d in period t

Objective

min
NC g , t ,RD g,t

NPV
                            (1)

Objective Function Equations

RRt=(1+r )
−5( t−1)

          (2)

[FC g , t+VC g ,t+RDg , t ]∗¿RRt

NPV=∑
g,t

G,T

¿                            (3)

OM
g, t

TOTAL¿

TOTALCAPCOST g,t+∑
g

G

¿

FC t=∑
g

G

¿

                (4)

g , t
rate
g

fix¿

TOTAL¿5 IC g ,t ¿

                    (fixed costs per period) (5)
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rate
g

fuel¿
100
¿

1+(¿ ]

¿
¿

FPg ,t=¿

          (6)

rate
g

var¿

fu elcostg , 0FPg ,t+¿

PWROUT d ,g , tdurationd ¿

VCg , t=5∑
d

D

¿

          (variable costs per period) (7)

TOTALCAPCOST g,t=CAPCOST g ,t NC g ,thebscaleg , t               (8)

NCg , t=IC g ,t−[IC g ,t−1(1−retirerateg)]                       (9)

CAPCOST g , t=
CAPCOST g ,0

(ICg ,t
η1g)(KSg , t

η2g)                               (2-factor learning curve) (10)

NEWK g ,t=α g
1
5

RDg ,t
β KS g,t

ϕ

              (annual innovation possibilities frontier) (11)

KSg , t+1=5NEWK g ,t+(1−δ g)KSg ,t                       (knowledge stock accumulation) (12)

Et=5∑
d , g

D,G

emissionrate gPWROUT d , g ,tdurationd                             (emissions per period) (13)
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Constraints

∑
t

T

Et≤ecap                  (cumulative emissions cap) (14)

∑
g¿

G¿

PWROUT d, g¿, t=NETLOADd , t        (electricity demand balance) (15)

KK t=(1+k )
5(t−1)

        (16)

d , g¿∗¿, t

NETLOADd ,t=demandd KK t−PWROUT ¿
                        (17)

PWROUT d ,g , t≤ ICg ,t                                                           (18)

∑
d

D

PWROUT d , g ,t durationd≤ ICg , t ¿8760∗availabilityrateg                            (19)

∑
d

D

PWROUT d, g∗¿ ,t=ICg∗¿,t availabilityrateg∗¿                                  (20)

∑
g

G

ICg, t≥demandpeak×KKt (1+reservemargin)    

           (reliability requirement) (21)

ICg ,1=initialcapacity g                               (starting with the existing system) (22)

ICg∗¿∗¿,t+1≤installuprateg∗¿∗¿×ICg∗¿∗¿, t      

                 (maximum rate of change for installed capacities) (23)

Online Supplemental Appendices – Page 5 of 17



Online Supplement for Santen, N.R., Webster, M., Popp, D., and I.J. Perez-Arriaga (2016). “Inter-temporal R&D 
and capital investment portfolios for the electricity industry’s low carbon future.” Energy Journal X(X): xx-xx.

NCg∗¿∗,t=¿ 0                            (no new builds for outdated technologies) (24)

APPENDIX C. Model Inputs and Assumptions

Table C1.  Electricity Generator Data

Technology
Initial

Capacity
[GW]

5-year
Retirement

Rate [%]
Heat Rate

[MMbtu/MWh]

Initial Capital
Cost [$/kW-

knowledgeunit]

Fixed
O&M
Cost

[$/kW-
year]

Initial
Fuel Cost

[$/MMBtu]

Other
Variable

Cost
[$/MWh]

Emissions
Rate

[lbs/MMbtu
]

Annual
Availability

Rate [%]

Old Coal 300 15 10.00 1204 23.410 2.28 4.14 205 85

New Coal 1 - 8.80 3167 35.970 2.28 4.25 205 85

Coal with
CCS

1 - 12.00 5099 76.620 2.28 9.05 20.5 80

Old Steam
Gas

100 20 9.46 390 25.256 5.16 3.85 137 80

Gas
Combined

Cycle
200 - 6.43 1003 14.620 5.16 3.11 119 90

Gas
Combustion

Turbine
100 - 9.75 665 6.700 5.16 9.87 119 90

Hydro 100 - 10.34 1320 12.700 - 3.20 - 90

Nuclear 100 10 10.40 5355 85.663 0.62 0.48 - 90

Wind 50 - - 2438 28.070 - - - 30

Solar
1 - - 4755 16.700 - - - 951

Notes: 
1 The availability rate for solar is high due to the technology only operating during peak solar demand slices.
References: Short et al., 2011; EIA, 2010a; EIA, 2010b
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Table C2.  Growth Rates and System-Wide Parameters

Parameter Value

Cumulative Emissions Cap No Policy/Policy, ecap 140,000/60,000 Million Metric Tons

Electricity Supply Reliability Reserve Margin, m1 10%

Annual Electricity Demand Growth Rate, k 0.5%

Annual Discount Rate, r 5%

Coal Price Annual Growth Rate, fuel_growthc 4%

Gas Price Annual Growth Rate, fuel_growthng 1%

Maximum Rate of Change for Emerging Technology
Installed Capacities Per Period, install_uprateg

2.0

Notes: 
1 The reserve margin is applied in the model as a generation requirement above “net load.”  
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Table C3. Reference Model Technical Change Parameters

Technology Learning-by-Doing
Elasticity η1

Learning-by-
Searching Elasticity

η2
IPF a IPF IPF 

Coal with CCS 1 0.05889 0.02915 0.1853 0.1 0.54

Nuclear 0.05889 0.02915 0.1853 0.1 0.54

Wind 0.25154 0.10470 0.1856 0.1 0.54

Solar
0.41504 0.15200 0.1760 0.1 0.54

Original Sources: Barreto & Kypreos 2004; Popp 2006
*Note, this table is listed as Table 1 in the full paper.

1 The lack of experience with carbon capture and sequestration technology in the electric power sector makes it difficult to find reliable learning 
data for use in numerical models of technological change.  Thus, other authors have used learning rates for coal SO2 scrubbing technology or NOx 

reduction technologies and applied them to coal with CCS technology in numerical decision support models (Rubin, Taylor, Yeh, & Hounshell 
2004).  This paper uses the history of nuclear fission technology and its learning rates as a proxy for coal with CCS (both are capital-intensive, 
large baseload technologies with significant challenges of space, scale up, public acceptance, permitting, waste, etc.).
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Table C4.  ERCOT-like and Mid-Atlantic-like System Electricity Resource Bases

Technology
Initial

Capacity
[GW]

Initial
Capacity [%]

Initial
Capacity

[GW]

Initial
Capacity [%]

Reference
Model 
Initial

Capacity [%]

ERCOT-like ERCOT-like PJM-like PJM-like US

Old Coal 20 25% 80 45% 31%

New Coal 1 1% 1 1% 1%

Coal with CCS 1 1% 1 1% 1%

Old Steam Gas 10 13% 15 8% 10%

Gas Combined Cycle 30 38% 30 17% 21%

Gas Combustion Turbine 10 13% 10 6% 10%

Hydro 1 1% 10 6% 10%

Nuclear 5 6% 30 17% 10%

Wind 1 1% 1 1% 5%

Solar
1 1% 1 1% 1%

TOTAL 80 179

Notes: 
Defining features of each region are indicated by shaded cells.  The minimum capacity for any technology in the numerical model is 1 (GW).  
Sources: ERCOT 2014; PJM 2014 (values above are approximates based on these sources)
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TableC5.  ERCOT-like and PJM-like System Demand and Region-Specific Solar and Wind Capacity Factors 
by Time Slice

Time Slice
Duration

[hrs]
Demand

[GW]
Demand 

[GW]
Wind CF 

[%]
Wind CF 

[%]
Solar CF 

[%]
Solar CF 

[%]

ERCOT-like PJM-like
ERCOT-
like

PJM-like ERCOT-like PJM-like

1 736 40.93 84.22 0.284 0.105 - -

2 644 37.78 96.25 0.483 0.103 0.221 0.316

3 328 51.78 122.03 0.255 0.070 0.571 0.504

4 460 55.80 116.12 0.160 0.085 0.298 0.146

5 488 31.72 72.48 0.252 0.215 - -

6 427 31.41 84.29 0.450 0.203 0.179 0.241

7 244 38.96 88.60 0.292 0.170 0.558 0.438

8 305 35.74 90.85 0.296 0.170 0.248 0.052

9 960 30.56 84.77 0.275 0.312 - -

10 840 32.48 92.98 0.358 0.297 0.110 0.159

11 480 34.55 92.61 0.304 0.297 0.470 0.392

12 600 35.20 98.77 0.268 0.257 0.144 0.035

13 736 31.20 70.63 0.397 0.237 - -

14 644 30.53 82.93 0.580 0.241 0.184 0.290

15 368 38.15 87.81 0.435 0.192 0.569 0.501

16 460 40.61 88.10 0.346 0.187 0.273 0.114

17 40 62.60 92.16 0.204 0.091 0.578 0.487

Notes: The region with the higher level of renewable resource in each category is shaded.  Demand of the PJM-like system is almost twice as 
large as the ERCOT-like system.  The TX system is windier than the Mid-Atlantic.  Solar resources are more comparable, with TX having slightly
stronger resources during more slices.  
Sources: ERCOT 2012; PJM 2012; EPA 2014
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Figure C1.  Load Duration Curve Used (Original Source: Short et al. 2009)
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APPENDIX D. Detailed Operations Model Analyses

In addition to developing a simplified model, we also constructed a highly-detailed engineering operations
model (hereafter referred to as the “detailed operations model”) on a test-system, against which we compared results
to a replica of the reference model on the same test-system2.   The objective of this variation was to determine
whether  increasing levels of engineering detail resulted in amplified (and unidirectional) changes of those seen
when moving from the simplified power systems model to the reference model.  While the scope of the existing
work was to develop a framework for integrating better technical change dynamics and better power system details
to tackle the joint R&D and capacity planning problem, as described in Section 2, state-of-the-art power systems
models do contain a much more sophisticated representation of engineering reality than the reference model.  Thus,
the goal was to see whether results from the reference model were maintained when pushing engineering reality
even further.  Conversely, if they changed in a meaningful way, what insights can those changes provide?

The detailed operations model featured hourly demand and chronological generator dispatch; individual
generating  unit  commitments;  technology-specific  start-up  and  shut-down  costs,  ramp  rates,  and  minimum-
maximum outputs; and hourly profiles of wind and solar capacity factors for an actual region.  Four representative
weeks (one in each season) were modeled hour-by-hour, and annual generation for a base year was compared to
generation for the base year from the reference model.  To keep computational time for this this test reasonable, we
removed the technical change dynamics from this test.  We exploit our earlier finding that R&D investments track
the role a technology can play in meeting demand; the technical change dynamics would be the same between both
models, so seeing how individual technologies operate (generate electricity) differently between the two models is
sufficient to understand how their opportunities from R&D would change.  

Figure E1 compares  MWh electricity production by technology group in the  reference  model  and the
detailed operations model.  Generation for solar PV and wind are reasonably consistent between the two models,
nuclear displayed higher generation while coal displayed slightly lower generation in the operations model, and coal
with CCS and gas are relied on more in the operations model.  Minor differences in generation and the overall
general preference of gas units are not unexpected in the detailed operations model.  Given fast ramp rates of gas
units, there is an opportunity to cost-effectively cycle them to meet demand; the additional engineering detail in this
type of a model better represents gas units’ competitive position.  Conversely, a model with less temporal resolution
like  the  reference  model  is  unable  to  represent  realistic  decisions  on  shorter  time-scales,  and  can  thus  blur
operations.  

The increased use of coal with CCS units in the detailed operations model is an important result.  Moving
from simple to most detailed frameworks—simplified power systems model, reference model, and finally detailed
operations  model—electricity  produced  from  coal  with  CCS  is  relatively  high,  then  low,  then  high  again,
respectively.  Although this may appear initially surprising, this behavior is a result of how the operating position of
coal with CCS is represented alongside other substitutable technologies (e.g., nuclear) in the different versions of the
model, as well as how the quantity of available generating capacity is represented in the different models.  

First, in the detailed operations model, the increased use of coal with CCS is reflective of the technology’s
minimum output and slow downtime constraint.  Once these units are on, they must meet  load for  a minimum
amount of time.  Nuclear power in the detailed operations model also has a minimum output and two-fold higher
downtime constraints,  and  is  even more  constrained  with relatively high  start-up and  shut-down costs.   In  the
reference  model,  these  constraints  do  not  exist  for  coal  with  CCS.   Only  the  nuclear  technology  is  instead
represented as a “baseload” must run technology, and its generation thus effectively displaces generation that would
otherwise occur from coal with CCS.  In the simplified power systems model, the opposite result is encountered
once again, but for a different reason.  In the simplified model, coal with CCS remains free of operating constraints,
but so does nuclear, creating an artificially-level playing field. 

2 The modeled test system (including resource base, and renewable resource profiles) was roughly equivalent to 1/10 th of the ERCOT (TX) 
system modeled. A business-as-usual carbon scenario was modeled.

Online Supplemental Appendices – Page 12 of 17



Online Supplement for Santen, N.R., Webster, M., Popp, D., and I.J. Perez-Arriaga (2016). “Inter-temporal R&D 
and capital investment portfolios for the electricity industry’s low carbon future.” Energy Journal X(X): xx-xx.

Second, in the detailed operations model, generators are represented as discrete power plants with a set
quantity  of  production  capacity,  whereas  in  the  reference  model  and  in  the  simplified  model  generators  are
represented as a continuum of capacity (e.g., a single megawatt of nuclear capacity can be built and called upon to
generate  power).   This  means  that  in  the  detailed  operations  model,  it  is  more  difficult  for  nuclear  power  to
substitute for coal with CCS, if the coal with CCS plant is already committed and operating.  In this case, the system
will  first  use  power  from all  producing  MW of that  designated  coal  with CCS plant  before  selecting another
resource.   Combined,  the  operating  constraints  described  above  and  representation  of  discrete  plants  versus
continuous MW of generation supply result in a non-monotonic response of coal with CCS generation when moving
from the simplified model to the reference model to the detailed operations model.  

Overall, this test shows that common methods for designating technologies as “baseload” versus otherwise
available need to be carefully considered in the context of defining relative positions of substitutable technologies.
The  reference  model  seems to  be  accurately capturing relative  investments  paths  for  wind  and  solar,  and  the
investment strategy for low-carbon baseload technologies will  follow their  relative usefulness in the generating
portfolio.   Thus,  keeping  the  relative  positions  of  technologies  may  likely  be  the  more  important  driver  in
understanding  cost-effective  R&D  investment  opportunities  than  simply  adding  engineering  reality.   This
investigation is beyond the scope of the current paper which aims to outline a structure for bringing additional
innovation details together with power system details, but would be a valuable line for future research. 
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Figure E1. Electricity production by technology in reference model and detailed operations model.
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APPENDIX E. Sensitivity Analyses

Sensitivity Analysis #1: optimal investment strategies v. knowledge building components

A benefit of representing endogenous learning-by-searching with an innovation possibilities frontier (IPF),
such as Equation (3) of the reference model, is the ability to explicitly study assumptions about the effect of R&D
efficiency (parameterβ) and existing knowledge stock level (parameter ϕ) on the inter-temporal knowledge building
process, and consequently on the optimal investment strategy.  This is relevant in light of evidence in the empirical
technical  change literature showing variation across  energy technologies in the contribution of their  knowledge
stocks to successful innovation (Popp et al., 2013).  In the reference model (Section 3.1), we assume values of β and
ϕ from the literature,  assigning all  emerging technologies  the same values.3  Here we summarize results from
sensitivity analyses of the optimal strategy to both of these elasticity parameters.  We focus on the impact on R&D
investments.

Figure F1 shows the share of peak R&D investments over time, in each of the four emerging technology
groups for a range of R&D investment efficiency (parameter β) values under a carbon limit (reference value for β is
0.1).  With increasing R&D efficiency, the shares of wind and solar power (technologies with high learning rates and
early R&D) investments display only mild sensitivity; the R&D investment shares for these technologies decrease
slightly as R&D efficiency increases.  In contrast, nuclear power, which has a much lower learning rate and an
optimal path of R&D that peaks in later periods, sees increasing investment shares with increasing R&D efficiency.
The general trend is robust to R&D investment efficiencies.  It is optimal to invest the largest share into nuclear, the
next largest share into wind, the least into solar, and none into coal with CCS.  

The optimal investment pattern is more sensitive to assumptions about ϕ, the elasticity of new knowledge
production to current knowledge stock levels (Figure F2).  As this elasticity increases, the relative share of wind
R&D investments decrease and the relative share of nuclear R&D investments increase.  Specifically, for values of
ϕ below approximately 0.4 (reference value is 0.54), it is optimal to invest the majority of R&D into wind over
nuclear, but for values greater than 0.4, it is optimal to invest the majority of R&D into nuclear power.  The effect on
optimal R&D share for solar and coal with CCS is more robust to the knowledge stock elasticity.  It is optimal to
spend approximately one-tenth of total R&D expenditures on solar PV technology for any value of knowledge stock
strength.  The optimal strategy continues to exclude R&D or capital  investments into coal with CCS across all
values of β and ϕ studied here, for this version of the model.

We conclude that for technologies for which early R&D investments are optimal and learning rates are high
(e.g., wind), more efficient innovation processes lead to a lower share of R&D investment into those technologies.
The intuition is that if the same amount of R&D expenditures yields greater returns, there is no need to spend extra
money.  Additionally, because expenditures take place in the first few years for these technologies, there is less time
to benefit from accumulating knowledge.  However, for technologies with low learning rates and deferred R&D
investments (e.g., nuclear), increasing the elasticity of new knowledge to the knowledge stock leads to an increased
share  of  R&D  investment.   In  these  cases,  there  is  more  time  for  benefits  from  additional  R&D  to  accrue.
Discounting of future period R&D investments also makes an increase in R&D in later years a less costly decision.  

3 Although parameters β and ϕ of the innovation possibilities frontier are the same across the four emerging technologies, a scaling parameter α 
is used to calibrate each technology to technology specific learning values in the literature allowing each technology to follow its own cost-
reductions over R&D investment (See Section 3 for more details).
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When compared side-by-side, the sensitivity of the optimal investment strategy in terms of relative shares
of R&D investment to both R&D aknowledge stock elasticities is similar in that for those technologies with high
learning rates and early period R&D investments, the share of R&D investment tends to decrease (or stay constant)
with increasing values for these parameters.  On the other hand, for technologies with low learning rates (e.g.,
nuclear) and deferred R&D investments, the share of R&D investment tends to increase for higher values of these
parameters.  One noteworthy difference in the sensitivities however, as Figure F2 below shows, is that the impact of
the knowledge stock elasticity is large enough to change the priority ordering of R&D investments under a carbon
limit.  For low values for this parameter, the model results indicate that it is optimal to invest the majority of the
R&D expenditures on wind, whereas for high values for this parameter nuclear R&D becomes the priority.  Given
the limited empirical data on these parameters, and the inherent uncertain nature of the innovation process, we leave
the exploration of the impact of uncertainty in these parameters as future work.

Sensitivity Analysis #2: optimal investment strategy and regional electricity system heterogeneity

In a second sensitivity analysis, we studied the effect of geographic variation on the optimal investment
strategy.  Embedding detailed regional characteristics of the physical electric power system and its operations is
outside the scope of this paper, which aims to open a discussion about the impact of greater model resolution when
analyzing joint R&D and capacity decisions.  However, regional differences in the underlying generation capacity
portfolio  and  renewable  resource  potential—among  many  other  factors—play  an  important  role  in  defining
opportunities for new technologies.  The interpretation of R&D and technical change is more complex for a regional
analysis.   Knowledge gained from R&D or experience about these technologies is not likely to be contained within
a region, so there is a limit to the value in determining “optimal” regional R&D allocations.  Nevertheless, the focus
of this sensitivity analysis is the adaptability of the modeling framework to the underlying characteristics of the
electricity system represented, and the robustness of the temporal pattern of R&D priorities tracking the deployment
needs of the underlying power system.  Below, we discuss how the results change across regions and comment on
the impact that regional heterogeneity has on the aggregated results and insights from the reference model.

We constructed  two alternative  versions  of  the  reference  model,  but  instead  applied  demand  profiles,
underlying electricity generation resource portfolios, and region-specific hourly profiles for wind and solar capacity
factors (mapped on to the original 17 time slices) that are representative of the Electric Reliability Council of Texas
(ERCOT) and Pennsylvania-New Jersey-Maryland Interconnection (PJM) Mid-Atlantic electricity systems.  Tables
5  and  6  show  the  heterogeneity  between  these  regions,  and  compares  them  to  the  aggregate  U.S.-level
implementation of the reference model.  Overall, fossil (gas, and to a lesser extent coal) dominate the TX portfolio;
while fossil, nuclear, and some hydro dominate the Mid-Atlantic portfolio.  With respect to renewable resources, the
TX system has abundant wind and solar resources, but the Mid-Atlantic has a comparably stronger solar resource (as
measured by historical  hourly capacity factors).   In  comparison, the US-level reference model includes a more
diverse generating portfolio, with a mix of coal, nuclear, gas, and hydro, and uses a single resource availability
factor for wind and solar.  Figures F3 and F4 show the R&D and capacity investment strategy paths for each of these
regions.  For comparison, the U.S.-level reference model investment strategies are in Figures 1 and 2 in the paper.

  
Results show that under a carbon limit requiring large carbon emissions reductions, nuclear continues to

play an important role in new capacity, and therefore increased R&D investments in nuclear are optimal in earlier
periods.  As in the reference model, learning-based cost reductions occur more rapidly for nuclear than for coal with
CCS due to nuclear power’s greater existing capacity (LBD), and subsequent larger knowledge stock base (LBS).
As expected, the timing for these capacity investments and for the corresponding R&D, is tied to the relative shares
of existing capacity in a specific region.  For example, higher levels of nuclear R&D investment are delayed in PJM
compared to ERCOT because of the underlying high initial ratio of base load coal in PJM and resulting lack of need
for additional base load capacity.  After coal units are retired, nuclear dominates both the capacity and the R&D
investments.  

The patterns for wind and solar capacity and R&D follow the relative abundance of these energy resources
in each region.   ERCOT has both high solar  and high wind resources,  and under a carbon cap both resources
continue to be invested in for new capacity and R&D.  PJM, in contrast, has relatively lower quality wind but
moderate solar resources, and this results in solar accounting for a large share of the capacity and R&D investments
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when there is a carbon cap.  The reliance on a region’s highest quality renewable energy resource, and preferential
R&D investment in it, is seen more clearly in the business-as-usual cases.  ERCOT exploits exclusively wind, while
PJM exploits solar, both continuing to drive the capital costs of those technologies down as far as possible through
R&D.  A more balanced approach is taken in the national-level model, because the average resource availability
across  the country is  roughly comparable between wind and solar,  even though in individual  regions one may
dominate the other.  
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Figure F1.  Peak optimal R&D investments for various R&D efficiencies (value for β in the Innovation Possibilities
Frontier) under a carbon limit.
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Figure F2.  Peak optimal R&D investments for various knowledge stock strengths (ϕ values in the “Innovation 

Possibilities Frontier”) under a carbon limit.
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(a) ERCOT-like R&D with no carbon limit (b) PJM-like R&D with no carbon limit
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(a) ERCOT-like R&D with carbon limit (d) PJM-like R&D with carbon limit
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Figure F3. Regional results.  Ratios of optimal R&D investments to total R&D investments per period.  Compare to paper Figure 1 for U.S-level results
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Figure F4.  Left: ERCOT-like region optimal installed generation capacity under no carbon limit (top) and a carbon limit (bottom).  Right: PJM-like region 
optimal installed generation capacity under no carbon limit (top) and a carbon limit (bottom).  Compare to paper Figure 2 for U.S-level results.
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