
The Valley of Death for New Energy Technologies: Appendix

1 Numbered equations from the paper

First we have the equations specifying the model:

U =

∫ ∞
0

e−βτ
c(τ)1−γ

1− γ dτ (1)

k̇ = i− δk (2)

k̇B = iB − δkB (3)

k̇R = iR − δkR (4)

Fk = ρRGkR + ρBHkB (5)

Ṡ = ρRQkR (6)

Ṅ = n (7)

µ(S,N) = α0 +
α1

S̄ − S − α2/(α3 +N)
= α0 +

α1(α3 +N)

(S̄ − S)(α3 +N)− α2
(8)

Ḣ =


bkψBj

α−ψ if H ≤ H̄,

0 otherwise

(9)

Ak = c+ i+ iR + n+ iB + j + µ(S,N)ρRkR +mρBkB (10)
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This leads to the objective for the constrained optimization problem:

H =
c1−γ

1− γ + q(i− δk) + qR(iR − δkR) + qB(iB − δkB) + νn+ σρRQkR

+ ηbkψBj
α−ψ + λ

{
Ak − c− i− iR − iB − n− j − µ(S,N)ρRkR −mρBkB

}
+ pe

{
ρRGkR + ρBHkB − Fk

}
+ θRLρR + θRU (1− ρR) + θBLρB

+ θBU (1− ρB) + ωi+ ωRiR + ωBiB + ωNn+ ωHj

(11)

The first order conditions for a maximum of (11) with respect to the control variables are:

∂H
∂c

= c−γ − λ = 0 (12)

∂H
∂ρR

= σQkR − λkRµ(S,N) + peGkR + θRL − θRU = 0

θRLρR = 0, θRL ≥ 0, ρR ≥ 0, θRU (1− ρR) = 0, θRU ≥ 0, ρR ≤ 1

(13)

∂H
∂ρB

= −λmkB + peHkB + θBL − θBU = 0

θBLρB = 0, θBL ≥ 0, ρB ≥ 0, θBU (1− ρB) = 0, θBU ≥ 0, ρB ≤ 1

(14)

∂H
∂i

= q − λ+ ω = 0;ωi = 0, ω ≥ 0, i ≥ 0 (15)

∂H
∂iR

= qR − λ+ ωR = 0;ωRiR = 0, ωR ≥ 0, iR ≥ 0 (16)

∂H
∂iB

= qB − λ+ ωB = 0;ωBiB = 0, ωB ≥ 0, iB ≥ 0 (17)

∂H
∂n

= ν − λ+ ωN = 0, ωNn = 0, ωN ≥ 0, n ≥ 0 (18)

∂H
∂j

= η(α− ψ)bkψBj
α−ψ−1 − λ+ ωH = 0, ωHj = 0, ωH ≥ 0, j ≥ 0 (19)

The differential equations for the co-state variables are:

q̇ = βq − ∂H
∂k

= (β + δ)q − λA+ peF (20)

q̇R = βqR −
∂H
∂kR

= (β + δ)qR − σρRQ+ ρRλµ(S,N)− ρRpeG (21)
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q̇B = βqB −
∂H
∂kB

= (β + δ)qB − ηψbkψ−1
B jα−ψ + ρBλm− ρBpeH (22)

ν̇ = βν − ∂H
∂N

= βν + λρRkR
∂µ

∂N
(23)

σ̇ = βσ − ∂H
∂S

= βσ + λρRkR
∂µ

∂S
(24)

η̇ = βη − ∂H
∂H

= βη − ρBpekB (25)

We then defined various critical energy prices:

pRLR =
λ(A+ µ)− σQ

F +G
(26)

pBLR =
λ

F +H

[
A+m− ψ

α− ψk
(α−1)s
B Y

]
(27)

pBρ0 =
λ

F

[
A− ψ

α− ψk
(α−1)s
B Y

]
(28)

where we have defined Y ≡ [η(α− ψ)b/λ]s and s ≡ 1/(1 + ψ − α) > 1

pRSR =
λµ− σQ

G
(29)

pBSR =
λm

H
(30)

The energy market equilibrium condition relating the use of kB to the use of kR

ρB =
Fk − ρRGkR

HkB
(31)

Setting the fossil fuel production costs in the calibration:

0.1614 = α0 +
α1

S̄ − α2/α3
(32)
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2 Differential equations in each regime going backwards in time

2.1 The long run endogenous growth economy

Beyond TH , H is constant at H̄. The control variables are c, i and iB, while the state variables are

k and kB. In this regime, the resource constraint (10) simplifies to

c+ i+ iB +mkB = Ak (33)

while the energy market equilibrium condition becomes

Fk = H̄kB (34)

Differentiating (34) and using the assumption that the depreciation rates are identical, we obtain

Fi = H̄iB (35)

With both i, iB > 0, (15) and (17) imply q = λ = qB. Noting also that j = 0 and ρB = 1, the

co-state equations for q and qB in this regime then imply

λ̇ = (β + δ)λ− λA+ peF = (β + δ)λ+ λm− peH̄ (36)

In particular, the price of energy is constant at

pe =
A+m

H̄ + F
λ (37)

while λ satisfies the differential equation

λ̇

λ
= β + δ − AH̄ −mF

H̄ + F
≡ −Ā (38)
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where Ā is a constant.1 For another constant K̄, the solution to (38) can be written

λ = K̄e−Āt (39)

Using the differential equation for k, (39) and the first order condition (12) for c, resource constraint

(33), the constraint on investment (35) and the definition of Ā in (38) we get

k̇ = (Ā+ β)k − H̄K̄−1/γ

H̄ + F
eĀt/γ (40)

The integrating factor for the differential equation (40) is e−(Ā+β)t, so the solution can be written

k = C0e
(Ā+β)t +

H̄γK̄−1/γ

(H̄ + F )[βγ + Ā(γ − 1)]
eĀt/γ (41)

for another constant C0. However, the transversality condition requires

lim
t→∞

e−βtλk = C0K̄ + lim
t→∞

H̄γK̄(1−1/γ)

(H̄ + F )[βγ + Ā(γ − 1)]
e(Ā/γ−Ā−β)t = 0 (42)

that is, C0 = 0 and2 Ā(1− γ) < βγ. Thus, k will have a growth rate Ā/γ and be given by

k =
H̄γK̄−1/γeĀt/γ

(H̄ + F )[βγ + Ā(γ − 1)]
(43)

with λ = q = qB given by (39) and where K̄ is a constant yet to be determined. From (34) and

(43), the capital stock allocated to renewable energy production will be

kB =
FγK̄−1/γeĀt/γ

(H̄ + F )[βγ + Ā(γ − 1)]
(44)

The beginning of the final regime occurs at TH when H attains H̄ and η = 0. The value of k, kB, λ

and ϕ at TH set their values at the end of regime 5.

1To get perpetual growth, we must have c→∞ as t→∞, which from (12) will require λ→ 0 and hence Ā > 0,
that is A > β + δ + F (β + δ +m)/H̄

2Since Ā > 0, the inequality will be satisfied if γ > 1, as assumed in the numerical analysis. If 0 < γ < 1, it
requires an additional restriction, A < β/(1− γ) + δ + F [β/(1− γ) + δ +m]/H̄, on the range of parameter values.
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2.2 Regime 5: Fully dynamic renewable regime

Regime 5 has direct investment in renewable energy R&D (j > 0), end-use capital (i > 0) and

renewable energy production capital (iB > 0). Using the solutions for c from (12) and j from (19),

and ρB = 1, the resource constraint (10) gives one equation linking i and iB

i+ iB = Ak − Y ksψB −mkB − λ−1/γ (45)

Differentiating the energy market equilibrium condition Fk = HkB and using this condition with

(2), (3) and (19), which implies Ḣ = bksψB Y α−ψ, we obtain a second equation linking i and iB

Fi−HiB = bksψ+1
B Y α−ψ (46)

Equations (46) and (45) then give us two equations to solve for i and iB, as illustrated in Figure 1.

The differential equations (2) and (3) then yield k̇ and k̇B. In this regime, we will again have

i

iB

Fi � HiB = ḢkB

i + iB = Ak � j � mkB � c

Figure 1: Solving for investments in regime 5

q = λ = qB. Noting that the price of energy pe will be given by (27) and ρB = 1, the co-state

differential equations are η̇ = βη − pekB and λ̇ = (β + δ −A)λ+ peF .
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2.3 Regime 4: No investment in renewable capacity

The incentive to invest in H will decline as H ↑ H̄. Solving backwards in time in regime 5, we

therefore expect Ḣ/H to increase, shifting the upward sloping line in Figure 1 to the right. On the

other hand, as we move backwards in time, the resources available to support i+ iB will decrease,

shifting the downward sloping line to the left. Thus, iB is likely to decline rapidly and, as shown in

the text, the constraint iB ≥ 0 will bind at some TB > TR. We then enter regime 4, which involves

full use of renewable capacity (ρB = 1) but no investment in additional capacity (so k̇B = −δkB).

The lower boundary of regime 4 is TR where energy production from fossil fuels ends.

Using the solutions for c from (12) and j from (19), the resource constraint (10) implies:

i = Ak − Y ksψB −mkB − λ−1/γ (47)

However, as in regime 5, the energy market equilibrium condition will also determine a value for i:

Fi = bksψ+1
B Y α−ψ (48)

Equating the two expressions for i from (47) and (48) we obtain

bksψ+1
B Y α−ψ + FY ksψB − FAk +mFkB + λ−1/γF = 0 (49)

In preparation for differentiating (49) note that, since i > 0, (15) implies q = λ and (20) allows us

to write the derivative of λ in terms of pe as

λ̇ = (β + δ −A)λ+ peF (50)

Now use (50) and (25) to obtain the derivative of η/λ:

d

dt

(η
λ

)
= −pe

λ

[
kB + F

η

λ

]
+ (A− δ)η

λ
(51)
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Also, using the definition of Y , we obtain:

Ẏ = (s− 1)bY α−ψ d

dt

(η
λ

)
(52)

The derivative of (49) can then be written in terms of these expressions as:

ksψB

[
FẎ − sψδFY − bδ(sψ + 1)kBY

α−ψ + kB
λ

η
Ẏ

]
+ F

[
Aδk −Ai−mδkB −

1

γ
λ
− 1+γ

γ λ̇

]
= 0 (53)

which can be solved for an energy price pe that will ensure (47) and (48) give the same solution for

i. Co-state variable η will evolve according to (23) with ρB = 1.

At the lower boundary TR of regime 4, ρR jumps from one to zero, while ρB jumps from zero

to one. Also, pe equals the two short-run costs of energy production, (30) and (29). Using the fact

that σ converges to zero at TR, we therefore must have

pe
λ

=
µ

G
=
m

H
(54)

Equation (54) can be used to determine TR and the value of S at TR once N(TR) = N̄ has been

specified. Also, given that kB and H are known at TR when solving backwards in time, energy

market equilibrium will determine a limiting value for kR at TR, namely kR(TR) = H(TR)kB(TR)/G.

2.4 Regime 3: Only fossil fuels used, iR = n = i = 0

In this regime, only fossil fuels are used to produce energy (ρR = 1, ρB = 0). However, we have

iR = 0, so kR declines according to k̇R = −δkR. The energy market equilibrium condition now

becomes Fk = GkR. However, since iR = 0 and F and G are constant, differentiation implies we

now must also have i = 0. We also have n = 0, so N remains fixed at N̄ . Using the solutions for c

and j, the resource constraint (10) can be written

iB = Ak − Y ksψB − µkR − λ−1/γ (55)

From iB > 0 and (17) we get qB = λ and q̇B = λ̇. Also, ρB = 0 in regime 3, as it does for all
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t < TR. Then from (22), λ̇ will evolve in regime 3 according to

λ̇

λ
= β + δ − ψ

α− ψk
(α−1)s
B Y (56)

The co-state variables ν, σ and η evolve according to (21), (23), (24) and (25) with ρR = 1 and

ρB = 0 and pe = pRSR. In particular, for all t < TR, η will evolve according to3

η̇ = βη (57)

Similarly, (24) with ρR = 1 implies

σ̇ = βσ + λkR
∂µ

∂S
(58)

while (23) with ρR = 1 implies

ν̇ = βν + λkR
∂µ

∂N
(59)

The lower boundary TN of regime 3 will be where ν = λ.

2.5 Regime 2: Only fossil fuels used, investment in N but not kR

For T ∈ [TQ, TN ], again ρR = 1 and ρB = 0, while iR = 0 again implies kR declines according to

k̇R = −δkR. As in regime 3, energy market equilibrium will imply that i = 0 and k̇ = −δk, but

iB, j, n > 0. Using the solutions for c and j, and i = 0 = iR, the resource constraint (10) implies

iB + n = Ak − Y ksψB − µkR − λ−1/γ (60)

Since n > 0 for all t ≤ TN , ν = λ and hence ν̇ = λ̇. From iB > 0 and (17), λ = qB, and using

ρB = 0 and (22), λ again evolves according to (56). Then, using also (23) and ρR = 1, we obtain:

kR
∂µ

∂N
= δ − ψ

α− ψk
(α−1)s
B Y (61)

3Thus, η > 0 and increasing exponentially for t < TR, while for t > TR it decreases to zero at TH .
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Then (noting that (α− 1)s = ψs− 1 and iR = 0) the derivative of (61) can be written as:

− δ ∂µ
∂N

kR + kR
∂2µ

∂N2
n+Qk2

R

∂2µ

∂S∂N
+

ψskψs−2
B

α− ψ

[
(α− 1)Y (iB − δkB) + (α− ψ)bkBY

α−ψ d

dt

(η
λ

)]
= 0

(62)

where (25), ρB = 0, (56) and (61) yield the derivative of η/λ in this regime:

d

dt

(η
λ

)
= −η

λ

∂µ

∂N
kR (63)

The two equations (60) and (62) can then be solved for the two investments iB and n. Using ν = λ

we find that λ̇/λ will now satisfy a much simpler equation

λ̇

λ
= β + kR

∂µ

∂N
(64)

Throughout regimes 2 and 3, pe = pRSR and hence q̇R = (β + δ)qR. Then since qR = 0 at TR, qR

remains zero throughout regimes 2 and 3. However, at the lower boundary of regime 2, we must

have qR = λ > 0 since iR > 0 throughout regime 1 and falls to zero only at TQ. The co-state variable

qR must therefore be left continuous and differentiable for all t < TQ, but jump discontinuously to

zero at TQ when investment in kR ceases. The lower boundary TQ of regime 2 cannot be calculated

endogenously and becomes an additional value that has to be set to attain the initial conditions.

The differential equations for the co-state variables η and σ will be (57) and (58) as in regime 3.

However, σ also is discontinuous at TQ. Throughout regime 1 and also as t ↑ TQ, pe = pRLR = pBρ0,

and to ensure this relationship in regime 1 when solving backwards we set:

σ(TQ) =
λ

FQ

[
µF +

ψ(F +G)

α− ψ k
(α−1)s
B Y −AG

]
(65)

2.6 Regime 1: Investment in both kR and kB but only fossil fuel is used

In regime 1, renewable energy is not produced (ρB = 0), but all energy investments iR, iB, n and j

are positive. Using the solutions for c and j, the resource constraint (10) can now be written

i+ iB + iR + n = Ak − µkR − Y ksψB − λ−1/γ (66)
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Once again, the energy market equilibrium condition can be differentiated to yield

Fi−GiR = 0 (67)

and hence i = GiR/F . A third equation involving the investments can again be obtained from

(61). Since iR > 0, however, (62) is modified to an equation involving iR, iB and n:

∂µ

∂N
iR − δ

∂µ

∂N
kR + kR

∂2µ

∂N2
n+Qk2

R

∂2µ

∂S∂N
+

ψskψs−2
B

α− ψ

[
(α− 1)Y (iB − δkB) + (α− ψ)bkBY

α−ψ d

dt

(η
λ

)]
= 0

(68)

where the derivative of η/λ is once again given by (63). The fourth equation involving investments

arises from the fact that, with both iR, iB > 0, pe has to equal both (26) and (28):

µ− σ

λ
Q− AG

F
+
ψk

(α−1)s
B Y (F +G)

(α− ψ)F
= 0 (69)

Then differentiating (69) we obtain:

∂µ

∂N
n+

σQ

λ

[
∂µ

∂N
kR − π

]
+

ψs(F +G)kψs−2
B

(α− ψ)F

[
(α− 1)Y (iB − δkB) + (α− ψ)bkBY

α−ψ d

dt

(η
λ

)]
= 0

(70)

where we have used ν = λ and thus (23) and (24) with ρR = 1 to obtain:

d

dt

(σ
λ

)
=

[
∂µ

∂S
− σ

λ

∂µ

∂N

]
kR (71)

The four equations (66), (67), (68) and (70) can then be solved for i, iR, iB and n. The differential

equations governing the evolution of the co-state variables will again have ρR = 1, ρB = 0 and pe

given by (28). In particular, λ̇/λ (with qR = qB = λ) will satisfy the simpler equation (64), while

η̇ and σ̇ will again satisfy (57) and (58) respectively.
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3 Initial and terminal conditions

At t = 0, there are three initial conditions for the physical capital stocks k(0), kR(0) and kB(0), an

initial value for renewable energy productivity H(0) and, by definition, S(0) = N(0) = 0. However,

active investment in N, kR and kB imposes two constraints on these state variables, leaving only

four independent targets. We take these to be k(0), H(0) and S(0) = N(0) = 0. We need to

choose four initial values for the differential equations and solve backwards to hit these targets.

The solution in the final analytical regime depends on an unknown constant K̄, while we also need

to specify values for TH , N at TR, and the time TQ when investment in kR ceases.

4 MatLab programs

The MatLab programs that were written to solve the system of differential equations for given

parameter values are available as separate .m files on the same web site as this appendix.
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