The Valley of Death for New Energy Technologies: Appendix

1 Numbered equations from the paper

First we have the equations specifying the model:
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This leads to the objective for the constrained optimization problem:
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The first order conditions for a maximum of (11) with respect to the control variables are:
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The differential equations for the co-state variables are:
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We then defined various critical energy prices:
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where we have defined Y = [n(a—¢)b/A]* and s=1/(14+¢ —a) > 1
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The energy market equilibrium condition relating the use of kp to the use of kr
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Setting the fossil fuel production costs in the calibration:
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2 Differential equations in each regime going backwards in time

2.1 The long run endogenous growth economy

Beyond Ty, H is constant at H. The control variables are ¢, i and ig, while the state variables are

k and kp. In this regime, the resource constraint (10) simplifies to
c+i+ip+mkp = Ak (33)
while the energy market equilibrium condition becomes
Fk = Hkp (34)
Differentiating (34) and using the assumption that the depreciation rates are identical, we obtain
Fi = Hig (35)

With both i,ig > 0, (15) and (17) imply ¢ = A = ¢p. Noting also that j = 0 and pp = 1, the

co-state equations for ¢ and ¢p in this regime then imply

A=(B+NN—=AA+pF =B+ )N+ Am—p.H (36)

In particular, the price of energy is constant at
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where A is a constant.! For another constant K, the solution to (38) can be written

A= Ke (39)
Using the differential equation for &, (39) and the first order condition (12) for ¢, resource constraint
(33), the constraint on investment (35) and the definition of A in (38) we get
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The integrating factor for the differential equation (40) is e_("”ﬁ)t, so the solution can be written
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for another constant Cy. However, the transversality condition requires
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that is, Cop = 0 and? A(1 — ) < B7. Thus, k will have a growth rate A/ and be given by
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with A = ¢ = ¢p given by (39) and where K is a constant yet to be determined. From (34) and

(43), the capital stock allocated to renewable energy production will be
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The beginning of the final regime occurs at T when H attains H and 1 = 0. The value of k, kg, A

and ¢ at Ty set their values at the end of regime 5.

'To get perpetual growth, we must have ¢ — co as t — oo, which from (12) will require A — 0 and hence A > 0,
thatis A>B+d5+ F(B+6+m)/H

2Since A > 0, the inequality will be satisfied if v > 1, as assumed in the numerical analysis. If 0 < v < 1, it
requires an additional restriction, A < 8/(1 — )+ + F[B/(1 — ) + § +m]/H, on the range of parameter values.



2.2 Regime 5: Fully dynamic renewable regime

Regime 5 has direct investment in renewable energy R&D (j > 0), end-use capital (i > 0) and
renewable energy production capital (ip > 0). Using the solutions for ¢ from (12) and j from (19),

and pp = 1, the resource constraint (10) gives one equation linking ¢ and ip
i+ip=Ak - Yk —mkp — A"V (45)

Differentiating the energy market equilibrium condition F'k = Hkp and using this condition with

(2), (3) and (19), which implies H = bk?Y‘“_d’, we obtain a second equation linking 7 and ip
. . g8ty a—
Fi—Hip =0bky Y (46)

Equations (46) and (45) then give us two equations to solve for ¢ and ip, as illustrated in Figure 1.

The differential equations (2) and (3) then yield & and kp. In this regime, we will again have
iB
A

Fi—Hig = Hkp

i+ig=Ak—j—mkp —c

Figure 1: Solving for investments in regime 5

g = A = qp. Noting that the price of energy p. will be given by (27) and pp = 1, the co-state

differential equations are 1 = 81 — p.kp and A = (B+d—A)N+pF.



2.3 Regime 4: No investment in renewable capacity

The incentive to invest in H will decline as H 1 H. Solving backwards in time in regime 5, we
therefore expect H /H to increase, shifting the upward sloping line in Figure 1 to the right. On the
other hand, as we move backwards in time, the resources available to support i 4+ ¢ will decrease,
shifting the downward sloping line to the left. Thus, ip is likely to decline rapidly and, as shown in
the text, the constraint i > 0 will bind at some Tp > Tr. We then enter regime 4, which involves
full use of renewable capacity (pp = 1) but no investment in additional capacity (so kg = —0kg).
The lower boundary of regime 4 is Ty where energy production from fossil fuels ends.

Using the solutions for ¢ from (12) and j from (19), the resource constraint (10) implies:
i= Ak = YEY —mkp — XV (47)
However, as in regime 5, the energy market equilibrium condition will also determine a value for i:
Fi = bty (48)
Equating the two expressions for i from (47) and (48) we obtain
b T YV L FY RS — FAk +mFkp +A\"Y7F =0 (49)

In preparation for differentiating (49) note that, since ¢ > 0, (15) implies ¢ = X and (20) allows us

to write the derivative of A in terms of p. as
A= (B+086— AN+ pF (50)
Now use (50) and (25) to obtain the derivative of n/A:
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Also, using the definition of Y, we obtain:

' pd

V= (s -y (g) (52)

The derivative of (49) can then be written in terms of these expressions as:

. A 1 _ 1t~y
k?’ FY — spdFY —bd(se) + 1)kgY ™% + k:BY} +F [A&k: — Ai—mdkg — A" 7 Al =0 (53)
n v
which can be solved for an energy price p, that will ensure (47) and (48) give the same solution for
i. Co-state variable n will evolve according to (23) with pp = 1.
At the lower boundary Tg of regime 4, pr jumps from one to zero, while pp jumps from zero
to one. Also, pe equals the two short-run costs of energy production, (30) and (29). Using the fact

that o converges to zero at Tg, we therefore must have
(54)

Equation (54) can be used to determine T and the value of S at Tk once N(Tg) = N has been
specified. Also, given that kg and H are known at Tk when solving backwards in time, energy

market equilibrium will determine a limiting value for kg at T, namely kr(Tgr) = H(Tr)kp(Tr)/G.

2.4 Regime 3: Only fossil fuels used, i =n=i=0

In this regime, only fossil fuels are used to produce energy (pr = 1,pp = 0). However, we have
in = 0, so kg declines according to kg = —0kr. The energy market equilibrium condition now
becomes 'k = Gkgr. However, since ig = 0 and F' and G are constant, differentiation implies we
now must also have i = 0. We also have n = 0, so N remains fixed at N. Using the solutions for ¢

and j, the resource constraint (10) can be written
ip = Ak =YK — pkp — X7V (55)

From ip > 0 and (17) we get ¢gg = A and ¢p = A. Also, pg = 0 in regime 3, as it does for all



t < Tg. Then from (22), A will evolve in regime 3 according to

A_gys— Y pletey (56)
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The co-state variables v, 0 and 7 evolve according to (21), (23), (24) and (25) with pgr = 1 and

pp =0 and p, = pgR. In particular, for all t < Tx, n will evolve according to?

= Pn (57)
Similarly, (24) with pr = 1 implies
o= BU—F)\kRgg, (58)
while (23) with pr = 1 implies
. ou
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The lower boundary T of regime 3 will be where v = A.

2.5 Regime 2: Only fossil fuels used, investment in N but not kp

For T € [Ty, Tn], again pr = 1 and pp = 0, while ig = 0 again implies kr declines according to
kr = —0kp. As in regime 3, energy market equilibrium will imply that ¢ = 0 and k= —d&k, but

ip,Jj,n > 0. Using the solutions for ¢ and j, and i = 0 = ig, the resource constraint (10) implies
. _ _ s =1/
ip+n=Ak—-Yky —pkr— A (60)

Since n > 0 for all t < T, v = A and hence » = A. From ig > 0 and (17), A = ¢p, and using

pp = 0 and (22), A again evolves according to (56). Then, using also (23) and pr = 1, we obtain:

op o Y (a-1)s
brgy =0~ gk Y (61)

3Thus, n > 0 and increasing exponentially for t < Tx, while for t > Tx it decreases to zero at Thx.



Then (noting that (o« —1)s = ¢s — 1 and ir = 0) the derivative of (61) can be written as:
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where (25), pp =0, (56) and (61) yield the derivative of n/)\ in this regime:
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The two equations (60) and (62) can then be solved for the two investments ip and n. Using v = A
we find that A /A will now satisfy a much simpler equation
2=t knoh (64)
Throughout regimes 2 and 3, p. = pgR and hence ¢r = (8 + 0)gr. Then since qr = 0 at Tg, qr
remains zero throughout regimes 2 and 3. However, at the lower boundary of regime 2, we must
have gr = A > O since ir > 0 throughout regime 1 and falls to zero only at Ty. The co-state variable
gr must therefore be left continuous and differentiable for all ¢ < Ty, but jump discontinuously to
zero at T when investment in ki ceases. The lower boundary T of regime 2 cannot be calculated
endogenously and becomes an additional value that has to be set to attain the initial conditions.
The differential equations for the co-state variables n and o will be (57) and (58) as in regime 3.
However, o also is discontinuous at Ty. Throughout regime 1 and also as ¢ 1 T, pe = pr = pfo,

and to ensure this relationship in regime 1 when solving backwards we set:

o(Tg) = | 4 LEHG)

(a—1)s .
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2.6 Regime 1: Investment in both £z and kp but only fossil fuel is used

In regime 1, renewable energy is not produced (pp = 0), but all energy investments ig,ig,n and j

are positive. Using the solutions for ¢ and j, the resource constraint (10) can now be written

i+ip+in+n=Ak—pkp—YEY -7 (66)
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Once again, the energy market equilibrium condition can be differentiated to yield

Fi—Gig=0 (67)

and hence i = Gig/F. A third equation involving the investments can again be obtained from

(61). Since ig > 0, however, (62) is modified to an equation involving ig,ip and n:
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where the derivative of 1/ is once again given by (63). The fourth equation involving investments

arises from the fact that, with both ig,ip > 0, p. has to equal both (26) and (28):
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Then differentiating (69) we obtain:
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b —1)Y (ip — —~ ver— ()] =
O [0 = Y = k) + (0 — wppkay 5 (3)| =0

where we have used v = X and thus (23) and (24) with pr = 1 to obtain:

d, o 15) o0
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The four equations (66), (67), (68) and (70) can then be solved for i,ig,ip and n. The differential
equations governing the evolution of the co-state variables will again have pr = 1, pp = 0 and p,
given by (28). In particular, A/ (with gz = ¢ = A) will satisfy the simpler equation (64), while

7 and ¢ will again satisfy (57) and (58) respectively.
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3 Initial and terminal conditions

At t = 0, there are three initial conditions for the physical capital stocks k(0), kr(0) and kg (0), an
initial value for renewable energy productivity H(0) and, by definition, S(0) = N(0) = 0. However,
active investment in N, kr and kp imposes two constraints on these state variables, leaving only
four independent targets. We take these to be k(0), H(0) and S(0) = N(0) = 0. We need to
choose four initial values for the differential equations and solve backwards to hit these targets.
The solution in the final analytical regime depends on an unknown constant K, while we also need

to specify values for T, N at T, and the time Ty when investment in kg ceases.

4 MatLab programs

The MatLab programs that were written to solve the system of differential equations for given

parameter values are available as separate .m files on the same web site as this appendix.
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