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Figure 1: The loss of load probability as a function of reserve response time: for greater response time,
t2 > t1, the system faces more uncertainty (note the greater variance of the distribution on the right), but
more reserve can be made available (R∆2 > R∆1 ).
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1. COMPUTATION OF THE SCARCITY ADDER

The ORDC adder can be derived through an analysis of the KKT conditions of a two-stage stochastic

dispatch model (Hogan, 2013; Papavasiliou and Smeers, 2017), and the resulting real-time energy

price is computed as follows:

λ = MCgm (pgm ) +

T1

T1 + T2
(VOLL − M̂C(

∑
g

pg)) · LOLP∆1 (R∆1 ) +

T2

T1 + T2
(VOLL − M̂C(

∑
g

pg)) · LOLP∆2 (R∆2 ). (1)

In the above formula, MCgm (pgm ) is the marginal cost of the marginal unit, as in an energy-only

market without an adder. VOLL represents the value of lost load. The function M̂C is introduced

by Hogan (2013) as the incremental cost of operations of the system for meeting an increment in

demand, for example one could employ the merit order function of the system when transmission

constraints are ignored. The function LOLP∆i (R∆i ) maps the amount of reserve that is available

to the system and which can respond within ∆i minutes (e.g. 7.5 minutes for secondary reserve,

and 15 minutes for tertiary reserve) to the loss of load probability, given the uncertainty that the

system is facing in a horizon of ∆i minutes. This concept is illustrated graphically in figure 1. Finally,

T1 = ∆1 < ∆2 = T1 + T2.
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2. FORMULAS FOR THE COMPUTATION OF THE ORDC ADDERWITH

CORRELATED IMBALANCE INCREMENTS

Denote LOLP7.5(R7.5) as the loss of load probability in a 7.5-minute horizon given that a capacity of

R7.5 can respond within 7.5 minutes. We present formulas for LOLP7.5(R7.5) under three alternative

assumptions. These alternatives are: (i) fully independent increments of imbalance (Papavasiliou

and Smeers, 2017); (ii) fully correlated increments of imbalance (Hogan, 2013); and (iii) increments

of imbalance which are calibrated against the empirically observed correlation. For all cases, it is

assumed that the 15-minute uncertainty, Xt , is distributed as a normal distribution with mean µ15 and

standard deviation σ15.

Fully independent increments of imbalance. The 7.5-minute imbalance is obtained as a random

variable with a distribution N ( 1
2 µ15,

√
1
2σ15), where N (·) denotes the normal distribution. The

7.5-minute contribution to the scarcity adder is computed as:

LOLP7.5(R7.5) = P[R7.5 < Yt ] = 1 − P[R7.5 ≥ Yt ] =

1 − P[
R7.5 −

1
2 µ15√

1
2σ15

≥
Yt − 1

2 µ15√
1
2σ15

] = 1 − Φ(
R7.5 −

1
2 µ15√

1
2σ15

), (2)

where Yt is the 7.5-minute imbalance of interval t, and Φ(·) is the cumulative density function of the

standard normal distribution.

Fully correlated increments of imbalance. Suppose that the 15-minute imbalance Xt is the result

of a linear evolution of the imbalance. The 7.5-minute contribution to the scarcity adder is computed

as:

LOLP7.5(R7.5) = P[R7.5 < Yt ] = 1 − P[R7.5 ≥ Yt ] =

1 − P[R7.5 ≥
1
2

Xt ] = 1 − P[2R7.5 ≥ Xt ] =

1 − P[
2R7.5 − µ15

σ15
≥

Xt − µ15

σ15
] = 1 − Φ(

2R7.5 − µ15

σ15
). (3)

Partially correlated increments of imbalance. We use kernel density estimation for estimating

G(δ |x) = P[∆t ≤ δ |Xt = x], the cumulative distribution function of ∆t = Wt − Yt conditional on Xt ,

where Wt is the increment of imbalance from minute 7.5 to minute 15 for a given imbalance interval

t. The detailed explanation of kernel density estimation is provided in section 3. Once the function

G(·) has been estimated, we proceed with the computation of the new adders, which account for the
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correlation of the imbalance increments. Conditioning on the realization of the 15-minute imbalance,

Xt , we obtain the following:

LOLP7.5(R7.5) =
∫ ∞

−∞

P[Yt ≥ R7.5 |x]P[Xt = x]dx =∫ ∞

−∞

P[∆t ≤ x − 2 · R7.5 |x]P[Xt = x]dx =∫ ∞

−∞

G(x − 2 · R7.5 |x)φ(
x − µ15

σ15
)dx (4)

where φ(·) represents the probability density function of the standard normal distribution. The second

equality is obtained by observing that ∆t = Wt − Yt and Xt = Yt +Wt by definition.

3. KERNEL DENSITY ESTIMATION

In order to estimate the conditional distribution P[∆t |Xt ] of the difference of imbalance increments

∆t given the 15-minute imbalance of the interval, Xt , we use kernel density estimation.

The idea of our approach is to customize the distribution of ∆t not only to the month and the

hour of the day (which is the current approach in ERCOT (Hogan, 2013)), but also to the imbalance

of the interval, Xt . More specifically, we check how the feature vector x, which consists of three

explanatory factors (hour, month, Xt ), maps to the output (change in imbalance increments, ∆t ). We

do this for the k ‘closest’ observations in the data, in the sense of the k historical observations of

factors xi whose Euclidean distance from the current-period conditions is the smallest1. This process

of selecting the historical data with the closest explanatory factors in order to predict the output of the

current period is called the k nearest neighbors algorithm in machine learning. We use k = 1000

neighbors in the results presented in the paper.

Once the k nearest neighbors of the current interval t have been identified, we use the historically

observed imbalance of these neighbors in order to estimate a probability distribution for the change

in imbalance increments, ∆t . For this purpose, we use kernel density estimation (KDE). The basic

idea of the KDE estimator is to create a distribution by placing a normal distribution, referred to

as a Gaussian kernel, around the historically observed output (change in imbalance increments δi)

resulting from the explanatory factors xi of the k nearest neighbors. Mathematically, the kernel

1We normalize data so as to have the same standard deviation for the hour and month, and twice the standard deviation for
the imbalance.
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density estimator can be described as follows:

g(δ |x) =
k∑
i=1

1
√

2πσ
exp

(
−

(δ − δi)2

2σ2

)
, (5)

where g(δ |x) is the probability density function of the change in imbalance δ, k is the number of

nearest neighbors, σ is a free parameter which determines the width of the Gaussian kernel, and δi is

the observed change in imbalance increments of the i-th nearest neighbor. The dependence on x, the

explanatory factors, is implicit, since the output points δi which we choose in order to build the KDE

are those of the k nearest neighbors, and therefore depend on the explanatory factors x.

The integral of g(δ |x) is the cumulative distribution function used in the computation of the

7.5-minute adder.
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