Price Responsiveness of the Deregulated Electricity Market in Singapore

Youngho Chang and Tuan Hin Tay
National University of Singapore and Singapore Power

July 8 - 10, 2004
Capital Hilton Hotel
Washington, D.C., USA
Market reforms in the electricity industry

• Drivers for the reform
 – Perceived failure of cost-of-service regulation
 – New economically viable generation technology in a small scale

• Expectation from the reform
 – Lower prices
 – More choices
 – Reliable services
 – Advancement of technology
 – Timely investment

• The likely gains may not be as great as the proponents have previously argued
Efficiency in the electricity market

- **Production Efficiency**
 - The right amount of goods using the right mix of inputs, so as to minimize costs of production

- **Consumption Efficiency**
 - The right amount of budget on the different goods available, so as to maximize utility

- **Allocation Efficiency**
 - The right goods go to the right consumer

- There could be efficiency gains from deregulation
 - Singapore started electricity deregulation in 1995
 - Does a move from regulated tariffs to unregulated prices increase consumption efficiency?
Deregulation of the electricity industry in Singapore

- Separation of the industry by ownership
 - Introducing competition into the sectors
 - Generation
 - Wholesale and retail electricity market
 - Retaining monopoly structure
 - Transmission & Distribution
 - Market support services
 - For metering, consumer transfers between retailers, sale of electricity to non-contestable consumers, provision of other services
 - Geared to facilitate competition in the electricity retail market

- New independent system operator and market operator
 - Separation of the system and market operations
New Electricity Market of Singapore (NEMS)

- **Singapore Electricity Pool (SEP)**
 - A day-ahead market
 - From 1998 to June 2001
 - There was a sole purchaser (Power Supply Ltd)
 - From July 2001 to December 2002
 - Introduction of contestable customers whose power requirement is greater than 2 MW

- **NEMS** starts on January 01, 2003
 - A mandatory pool
 - A spot market for electricity and reserves operated by the EMC (market operator)
Market structure of the NEMS

- Energy Market Company (EMC): Market operator

- Horizontal link among Generations-Wholesale market-Retailers-Consumers

- Wholesale market
 - Consists of electricity spot market and spinning reserve market
 - Generators provide electricity and reserved capacity to Wholesale market
 - Retailers purchase electricity from the electricity spot market while they provide interruptible loads to the spinning reserve market
 - Consumers get electricity via retailers

- Retailers could get electricity directly from generation companies via bilateral contracts

- MSSL supports retailers, consumers, and spinning reserve market
Players in the NEMS

- Energy Market Authority (EMA): Industry regulator
- Energy Market Company (EMC): Wholesale market operator
- SP PowerAssets and SP PowerGrid: Owner and operator of T&D
- Market Support Services Licensee: SP Services
- 7 Generators (5 in operation): 3 largest generators have about 90% of the total installed generation capacity
- 6 Retailers (5 in operation)
- Consumers: contestable and non-contestable based on their average electricity consumption
Contestable consumers

- Contestable consumers could purchase electricity
 - From the retailers
 - From the wholesale market via the Market Support Services Licensee (MSSL)
 - By trading directly in the market

- Progress in liberalization of the electricity retail market
 - About 250 large consumers have become contestable since July 2001
 - Covers 40% of the total electricity demand
 - From June 2003, another 5,000 non-domestic consumers have become contestable in batches
 - As of December 21, 2003, another 5,000 consumers have became contestable (average monthly electricity consumption > 10MWh)
 - Covers 75% of the total electricity demand
Vesting contracts

- Vesting contracts are implemented from January 2004
 - A contractual obligation of the generation companies to produce a specified quantity of electricity
 - 65% of total demand are vested (price-capped)
 - Non-contestable consumers are fully covered by vesting contracts (30%)
 - 35% of the vested quantity will be used to meet contestable demand
 - The price for the remaining 35% is determined by competition in the wholesale market
 - The vested quantity constitutes 30% of the installed generation capacity
 - The amount vested will gradually diminish and be abolished
Power generation and electricity consumption

• Power generation capacity
 – Authorized capacity: 11,490 MW
 – Installed capacity: 8,919 MW (June 2003)
 – Peak demand
 • 5,139 MW
 • Peak Reserve Ratio > 40% (5,139/8,919)

• Total electricity sales in 2002
 – 31,089.3 GWh (4.8% increase over 2001)

• Electricity consumption profile
 – Little seasonal variation
 – Substantial variation from weekdays to Saturdays and Sundays
 – Load profile over a day is very static
 – Consumption grows at a higher rate
Consumption efficiency

• A price that varies throughout the day would persuade the consumer to delay or reduce consumption when the good is expensive

• A tariff that changes only once every few months does not encourage the consumer to cut back on electricity use during peak hours when it is the priced highest
 – Higher price elasticity of electricity demand for contestable consumers than that for non-contestable consumers

• The NEMS would yield greater consumption efficiency
Data

• Contestable consumers (CC)
 – Half-hourly price and quantity data for contestable consumers
 • From July 01, 2001 to October 31, 2002 (Singapore Electricity Pool)
 • From January 01, 2003 to February 09, 2004 (NEMS)

• Non-contestable consumers
 – Quantity data for non-contestable consumers (NCC)
 • derived by subtracting that of contestable customers from the total demand
 – Price data for the NCC: tariff rates
Two-Stage-Least-Squares Regression

• A log-linear model

\[\log(Q) = A_1 \log(P_x) + A_2 \log(Q(-1)) + A_3 \log(Q(-2)) + A_4 t + C + \varepsilon, \]

where \(Q \) is the average quantity demanded, \(P_x \) is the electricity price, \(C \) is the constant term, \(t \) is the trend variable, and \(\varepsilon \) is the error term.

• Seasonal Autoregressive (SAR) Errors

\[(1 - \rho_1 L - \rho_2 L^2)(1 - \varphi L^4)e_t = u_t, \]

where \(L \) is the lag operator, \(\rho \) and \(\varphi \) are the autoregressive and seasonal autoregressive coefficients, and \(u \) is the error term.
Regression results (SEP)

- **Contestable consumers**
 \[\log(Q) = -0.0009 \log(P_x) + 1.125 \log(Q(-1)) - 0.142 \log(Q(-2)) + 0.02 \log(Q(-336)) \]
 \[\begin{align*}
 (-6.16)^{***} & \quad (57.46)^{***} & \quad (-7.19)^{***} & \quad (18.02)^{***}
 \end{align*} \]

- **Non-contestable consumers**
 \[\log(Q) = +0.00019 \log(P_x) + 0.51 \log(Q(-1)) + 0.44 \log(Q(-2)) - 0.38 \]
 \[\begin{align*}
 (0.84) & \quad (43.57)^{***} & \quad (39.05)^{***} & \quad (-19.02)^{***}
 \end{align*} \]
Regression results (NEMS)

• Contestable consumers

\[\log(Q) = -0.0016 \log(P_x) + 0.6334 \log(Q(-1)) - 0.3625 \log(Q(-2)) - 0.0021 \log(Q(-336)) \]
\[(-6.16)^{***} \quad (57.46)^{***} \quad (-7.19)^{***} \quad (18.02)^{***} \]

• Non-contestable consumers (Price)

\[\log(Q) = -0.0018 \log(P_x) + 0.697 \log(Q(-1)) + 0.2111 \log(Q(-2)) + 0.033 \log(Q(-48)) + 0.0575 \log(Q(-336)) \]
\[(-1.04) \quad (28.07)^{***} \quad (9.47)^{***} \quad (9.57)^{***} \quad (13.81)^{***} \]

• Non-contestable consumers (Tariff)

\[\log(Q) = -0.09 \log(TAR) + 0.6891 \log(Q(-1)) + 0.2111 \log(Q(-2)) + 0.019 \log(Q(-48)) + 0.044 \log(Q(-336)) \]
\[(-8.71)^{***} \quad (27.25)^{***} \quad (9.36)^{***} \quad (5.14)^{***} \quad (10.29)^{***} \]
Price responsiveness

• Contestable consumers
 – Inelastic (-0.0016): a little responsiveness

• Non contestable consumers
 – Demand appears not to depend on the price of electricity, but tariffs (-0.09)

• Implications of a little or no price-responsiveness
 – Price changes may not induce greater consumption changes
 – Savings from the reform would come mainly from the cost reductions in power production
 – The reform may not substantially reduce deadweight loss
 – However, moving from regulation to deregulation would improve the consumption efficiency
Price-Cost Markups

• Price data
 – Uniform Singapore Electricity Price (USEP)
 – Short-Run Marginal Cost (SRMC) of Combined Cycle Gas Turbines (CCGP) - the most efficiently configured power plant
 – Long-Run Marginal Cost (LRMC)

• (Price – Marginal Cost)/ Price
 – Entire periods: SRMC (0.4150) LRMC (0.0915)
 – 1/01/03 – 12/31/03: SRMC (0.4467) LRMC (0.1250)
 – 1/01/04 – 6/25/04: SRMC (0.3455) LRMC (0.0185)
Final remarks

• Deregulation in Singapore electricity market
 – Steady and phase by phase with vesting contracts

• Efficiency gains
 – Deregulation would improve consumption efficiency by making non-contestable consumers more price-responsive
 – Whether the purported efficiency gains are realized is to be seen as the liberalization proceeds

• Future study
 – Examine whether the NEMS leads to marginal cost pricing, in other words whether it produces prices that are close to the marginal costs under least cost power dispatch