USAEE/TAEE 24<sup>th</sup> Annual NA Conference

# **The Central Generation Paradigm**

#### Thomas R. Casten

Chairman & CEO Primary Energy, LLC

Scott Tinker, Director Bureau of Economic Geology August 4, 2003

# A "Central Generation Paradigm" Informs Conventional Thinking

- Universal acceptance that large generation has economies of scale
- Unquestioned assumption that all power will flow through wires
- Belief that free markets can not provide the world's most second most important service (Beer is first)

# IEA Reference Case "In the Box" Forecasts to 2030

- Energy demand will grow 67%
  - Fossil fuel will supply 90% of the increase
- Electric generation will double, need 4800 GW
- New generation cost \$4.2 trillion
- Report is silent on T&D, we estimate \$6.6 trillion added capital cost
- CO<sub>2</sub> emissions will increase 70%

# World Installed Electricity Generation Capacity, IEA Ref Case



# **Summary of Presentation**

- The power industry chose sub-optimal technology over the past 30 years
- The "Central Generation Paradigm" blocks optimal energy decisions.
- Generating US load growth with existing technologies, sited near users, significantly improves every key outcome
- Extrapolating to the IEA expected global load growth, decentralized energy can:
  - Save \$5.0 trillion of capital,
  - lower incremental power costs by 35-40%
  - reduce CO<sub>2</sub> emissions by 50%

### **US Energy Generation Efficiency Curve**



# **Conventional Central Generation**





Advances Enable Distributed use of Central Generation Technology

- Coal combustion improved, now very clean
  - Fluid bed and gasification technologies are only available in industrial sizes, perfect for DG
- Combustion turbines are most efficient way to convert natural gas today, available in all sizes
  - Aircraft derivative, mass-produced turbines most efficient, reverse economies of scale
  - 2<sup>nd</sup> most efficient turbine in world is 4 MW
- Fuel cells will equal or exceed GT efficiency, only sized for DG use
- Pollutant emissions have reduced by up to 99%.

#### **History of Gas Turbine NOx Controls**

**NOx Emissions** 

(parts per million)



# Has US Power Industry Made Optimal Decisions?

- We analyzed major power generation technologies over 1973-2002 period
- Central generation needs new T&D, DG needs 10% or less new T&D wires.
- Assumed 8% cost of capital for CG, 12% for DG
- Determined retail price/kW needed in each year, given then current data.



#### Annual US Utility Additions of Electric Generating Capacity by Technology 1973 - 2002

| Nuclear | ■ Coal         | Oil & Gas |
|---------|----------------|-----------|
| Hydro   | Pumped Storage |           |
| SCGT    | Other          | Other DG  |



Year





#### Spread of 435,000 MW Built by US Electric Utilities 1973 - 2002

Distributed Generation Central Generation



#### Spread of 175,000 MW Built by US IPPs 1973 - 2002

Distributed Generation Central Generation



#### Central Generation Paradigm Blinds Society to Cheapest, Cleanest Option:

**Recycling Industrial Energy** 



# **Defining Recycled Energy**

- Recycled energy is useful energy derived from
  - Exhaust heat from any industrial process;
  - Industrial tail gas that would otherwise be flared, incinerated or vented; and
  - Pressure drop in any gas

#### **US Industrial Recycling Potential**

- Recycled energy could supply 45 to 92
  Gigawatts of fuel-free capacity 13% of US peak
- Recycled energy is as clean as renewable energy – no incremental fuel or emissions, but:
  - Capital costs are \$500 to 1,500/kW, only 12% to 40% of solar and wind generation,
  - 90% load factors versus 14-40% for solar & wind
  - Recycled energy is both clean and economic option for new power generation.
- EIA shows only 2.2 Gigawatts operating

# Recycled Energy Case Study: Primary Energy

- NiSource invested \$300 million in six projects to recycle blast furnace gas, coke oven exhaust in four steel plants, 440 megawatts of electric capacity and 460 megawatts of steam capacity.
- Steel mills save over \$100 million per year and avoid significant air pollution
  - The CO<sub>2</sub> reduction is equivalent to the uptake of one million acres of new trees.
- The projects are profitable; were recently sold for \$335 million to our firm

#### 90 MW Recycled from Coke Production Chicago in Background



#### **Conclusion of Historical Study**

- Electric monopolies limited choices to central plants, ignoring cheaper and cleaner distributed generation options
- IPP companies built DG under PURPA rules, but shifted to central generation with passage of EPACT
- Neither monopolies nor IPP's built projects to recycle industrial waste energy

# What is Optimum Future Generation?

- We modeled 8 scenarios to meet EIA projected US load growth through 2020 (43%)
- Found each technology's capital cost, performance, emissions for each year
- Added 100% T&D for central generation, 10% for DG
- Met load growth with 8 scenarios: all central, all DG and blended scenarios

#### **Results, CG versus DG Dollars** (Dollars in Billions)

| ltem                         | All CG             | All DG      | Savings           | % Saved          |
|------------------------------|--------------------|-------------|-------------------|------------------|
| Capacity + T&D               | \$831              | \$504       | \$326             | 39%              |
| Power Cost                   | <mark>\$145</mark> | <b>\$92</b> | <mark>\$53</mark> | 36%              |
| Tons NOx                     | <b>288</b>         | 1 <b>22</b> | 166               | <mark>58%</mark> |
| Tons SO <sub>2</sub>         | 333                | 19          | 314               | <mark>94%</mark> |
| MM Tonnes<br>CO <sub>2</sub> | 776                | <b>394</b>  | <mark>381</mark>  | <mark>49%</mark> |

#### Capital Cost to Supply 2020 Electric Load Growth



### Retail Costs per KWh for Incremental 2020 Load



% DG of Total US Generation

- **T&D** Amorization on New T&D
- Capital Amorization + Profit On New Capacity
- **Fuel** 
  - **O&M** of New Capacity

# Added Annual Fossil Fuel Use for Incremental 2020 Load



% DG of Total US Generation

**Total "New" Distributed Generation Fuel Use** 

**Total "New" Central Generation Fuel Use** 

### **Emissions from Generating Incremental 2020 Electric Load**



% DG of Total US Generation

**NOx Emissions** 

**SO2** Emissions

**PM10 Emissions** 

### Added Annual CO2 Emissions for Incremental 2020 Load



CO2 emitted for added Cent Gen. CO2 emitted for added Dist. Gen.

# Extrapolating US Analysis to IEA World Case

- Insufficient data to run model for world
- We believe numbers are directionally correct for CG versus DG comparisons
- Look at cost of "in the box" approach of IEA Reference Case versus optimal solutions.

# **Conventional Central Generation**





 What is Lost if World Opts for DG?
 World will consume 122 billion fewer barrels of oil equivalent (1/2 Saudi oil reserves)

- Fossil fuel sales down \$2.8 trillion
- Medical revenues from air pollution related illnesses may drop precipitously
- Governments might spend much of the savings, opting to supply electric services to entire population
- Global warming might slow down

### **IAEE Suggested Member Actions**

- You are key advisors to energy policy makers, who will not remove barriers to efficiency without economist support.
- Please challenge, help us fix or explain flaws
- Suggest policy changes to send correct signals to power industry
- Demand hard proof of statements and studies that assume central generation is optimal
- Lets work together to change the way the world makes heat and power

# Thank you for listening!