

A hybrid top-down bottom-up model with macro-economic feedbacks

Chris Bataille & Mark Jaccard Energy and Materials Research Group School of Resource and Environmental Management Simon Fraser University, Canada July 9, 2004 Washington, D.C. *Corresponding Author (cbataill@sfu.ca)*

Outline of presentation

- The energy policy context
- Current energy modelling practice
- Building the hybrid model "CIMS"
- Results from experiments with the hybrid AEEI & ESUB estimates and cost curves of GHG abatement
- Future research & the potential for physical general equilibrium modelling

Policy context

- The four main issues to which energy policy modelling speaks forecasting and uncertainty in:
 - Climate change (< GHG emissions)
 - Energy efficiency (< energy use overall)
 - Local air quality (< emissions of criteria air contaminants)
 - Energy security (< use of insecure energy forms)
- The common thread how does long run demand for energy services and technological development change in the face of policy?

Recent practice in energy modelling

- Top down
 - Generally Macro-econometric or Computable General Equilibrium
 - Technological change depicted abstractly through input substitution (ESUB) and autonomous energy efficiency development parameters (AEEI)
 - Equilibrium (supply and demand) feedbacks inherent
- Bottom-up
 - Technologies depicted explicitly and are chosen via financial cost minimization, usually with perfect foresight
 - Equilibrium feedbacks partial or missing

Overview of CIMS

- Technologically detailed, behaviourally realistic simulation model with equilibrium feedbacks.
- Starting from a base year, compares the evolution of the capital stock in a BAU and Policy world
- 3 step simulation process: sub-sector technology choice, energy supply/demand and goods and services supply/demand equilibrium

Sub-sector technology choice

- In each period, for each technology competition:
 - 1) retire old stock,
 - 2) assess demand,
 - 3) retrofit existing stock,
 - 4) compete new technologies using financial capital, fuel and emissions costs modified for intangible costs, agent intransigence, risk and option value

EMRG

Energy supply/ demand equilibrium

Demand Models

Goods and services supply and demand equilibrium

Prices

Energy

Supply

Models

The goods and services supply and demand loop

- Industry Armington substitution elasticities used to provide a blended response of domestic and foreign demand for traded goods
- Residential, Commercial/Institutional and Freight Transportation – Driven by changes in manufacturing value-added using an econometrically estimated relationship
- Personal Transportation Driven by personal kilometres travelled (pkt) elasticities

Results from CIMS

- AEEI and ESUB parameter estimates that reflect possible future technological development
 - AEEI calculated by comparing a business as usual future with and with technological change
 - ESUB calculated by shocking CIMS with many price futures, and regressing the resulting data
- Cost curves of GHG abatement for Canada

Results – AEEI

Regions/Sectors	%/annum
Canada (w/ Transport)	0.41*
Canada (w/o Transport)	0.63*
Residences	0.46
Commercial & Institutional	1.70
Industry	0.22
Transportation	0.08

* Not including energy supply sector

ESUB calculation procedure

Results – Capital for Energy Substitution Elasticity (ESUB)

Regions/Sectors	
Canada (w/ Transport)	0.13
Canada (w/o Transport)	0.27
Residences	0.33
Commercial & Institutional	0.23
Industry	0.11
Transportation	0.08

Results – Inter-input ESUBs

Capital for electricity	0.33
Capital for petroleum products	0.08
Capital for natural gas	-0.05
Capital for coal	-0.04
Electricity for petroleum products	1.69
Electricity for natural gas	1.83
Electricity for coal	0.01
Petroleum products for natural gas	1.26
Petroleum products for coal	1.29
Natural gas for coal	0.95

Results - Cost curves of GHG abatement for Canada

Sector Cost Curves

Future research with CIMS & implications

- Modelling technology development:
 - Declining capital costs
 - Declining intangible costs
 - Empirical estimation of intangible parameters
- The future for general equilibrium modelling with technological explicitness

Energy supply & demand equilibrium

- Driven by changes in the average or marginal cost of production
- All volumes driven by domestic demand plus net exports
- Full endogenous pricing for electricity and RPP
- Supply curve pricing available for NG, coal and crude oil.
- Electricity, NG and crude oil trade adjusted by elasticities

The three dimensions model

Three dimensions model with the hybrid "CIMS"

Industry – The major reductions

"Other" consists of Pet. Refining, Chemical Prod., Mining, Smelting, Iron and Steel and Industrial Minerals