Real-Time Pricing for Managing a Steep Change of Electricity Demand

Makoto Tanaka

National Graduate Institute for Policy Studies

24th Annual North American Conference of the USAEE/IAEE July 8-10, 2004 Capital Hilton Hotel, Washington, DC, USA

Table of Contents

- 1. Background
- 2. Model
- 3. Optimal Pricing
- 4. Numerical Example
- 5. Practical Applications
- 6. Conclusions

1. Background

- A steep change of electricity demand
 - Sespecially on summer morning
- Generators must ramp up their units quickly
 - supply & demand must be balanced instantaneously

> the ramping capability of power supply equipment has been technologically improved

The rate of a demand change is given

Allocative inefficiency

• **Demand-side** measures

> price signals induce demand responses

➤ peak-load pricing, real-time pricing (RTP)

A new approach to real-time pricing that explicitly incorporates **the ramping cost**

The optimal rate of a demand change

2. Model

- 2.1 Electricity demand
- Time-varying demand

$$p(t) = P(x(t), t)$$

t: time, x(t): quantity of power

• The gross benefit of consumption

$$B(x(t),t) \equiv \int_0^{x(t)} P(q,t) dq$$

2.2 Electricity supply

The ramping process
> starting up, shutting down, loading, unloading, etc.

• The ramping cost

- ramping process causes wear and tear on equipment and shortens the life of components cf. Wang and Shahidehpour (1995)
- equipment needs special mechanical designs for fast ramping

• The ramping cost

> the outage cost incurred by an electric power shortage

Chao, H. P. (1983)

"Peak Load Pricing and Capacity Planning with Demand and Supply Uncertainty"

A steep change of electricity demand raises the possibility of a power shortage

The expected social cost of an outage

- The ramping cost: a general formula > a function of the rate of a demand change $x(t) \equiv \frac{dx(t)}{dt}$ S(x(t))
 - > assume that the marginal ramping cost $S'(\mathcal{K}(t))$ is increasing

 $S''(\mathbf{x}(t)) > 0$

• The variable cost

C(x(t))

fig. example of the ramping cost func.

3. Optimal Pricing

• Maximization of social welfare

$$\max_{x(t)\geq 0} : W^{s} \equiv \int_{0}^{T} \{B(x(t),t) - C(x(t)) \left[-S(x(t)) \right] \} dt$$

Considering the ramping cost explicitly

$$\int p^{s}(t) = C'(x^{s}(t)) \left[-S''(\mathfrak{K}(t)) \mathfrak{K}(t) \right]$$

RTP-S: Real-Time Pricing for Managing a Steep Change of Demand

The optimal rate of a demand change

4. Numerical Example

Flat rate : The base case

The price path

t

The demand path

0.50

0.30

5. Practical Applications

- RTP-S in a competitive electricity market A day-ahead market:
 - > generators offer supply schedules
 - > consumers submit demand schedules
 - > the market operator sets the price schedules

Generators incorporate their ramping cost into their offers

6. Conclusions

- ✓ RTP-S: Real-Time Pricing for Managing a Steep Change of Demand
 - > Optimal rate of a demand change
 - Ramping cost considered explicitly
- ✓ Long-run effect
- ✓ RTP-S in competitive electricity markets
- Further theoretical and empirical research on the ramping cost