Slide : 1

Testing the reliability of FERC's Wholesale Power Market Platform: An Agent-Based Computational Economics Approach

Leigh Tesfatsion

Professor of Economics and Mathematics, ISU and

Deddy Koesrindartoto

Ph.D. Economics Candidate, ISU

funded in part by the Los Alamos National Laboratory (Work in Progress)

Outline of Talk

- What is Agent-Based Computational Economics (ACE)?
- ACE and Electricity Market Design
- An ACE Framework for Testing the Economic Reliability of FERC's Wholesale Power Market Platform

Slide : 3

What is Agent-Based Computational Economics (ACE)? http://www.econ.iastate.edu/tesfatsi/ace.htm

- Culture-dish approach to the study of decentralized market processes
- Computational study of economies modelled as dynamic systems of autonomous interacting agents with learning capabilities

ACE Modelling: Culture Dish Analogy

- Modeller constructs a virtual economic world populated by various agent types (economic, social, biological, physical)
- Modeller sets initial world conditions
- The world then **develops over time** without further outside intervention
- World driven solely by agent interactions

ACE and Market Design

- Construct an ACE world capturing salient aspects of a proposed or actual market design.
- Introduce strategic profit-seeking traders with learning capabilities, and permit the ACE world to develop over time with no further intervention.
- Key Issue: Does the market design ensure efficient, fair, and orderly market outcomes over time despite repeated attempts by traders to game the design for their own personal advantage?

Wholesale Power Market Platform -- WPMP (FERC, White Paper, April 2003)

WPMP Basic Objectives

- Customer-based competitive wholesale power markets providing reliable service;
- Fair and open access to the transmission grid at reasonable prices;
- Good price signals to encourage appropriate investment in new generation and new transmission;
- Market power oversight and mitigation.

FERC's Basic WPMP Proposal Adopted?

- Mid-Atlantic (PJM) implements similar plan (1998)
- New York (NYISO) implements similar plan (1999)
- New England (ISO-NE) implements similar plan (2003)
- California (CAISO) files to adopt similar plan (2003)
- Midwest (MISO) files to adopt similar plan (7/2003), withdraws filing (10/2003), then refiles (3/2004)
- Opposition from states in Northwest and Southeast

Why Resistance to FERC's WPMP?

- Midwest (MISO) files/withdraws/refiles
 Key cited problem:
 - Lack of sufficient reliability testing
- Opposition from Northwest and Southeast Key cited problems:
 - Lack of sufficient reliability testing;
 - Questions about suitability given special local conditions (hydroelectric power, TVA...).

Economic Electricity Research (www.econ.iastate.edu/tesfatsi/epres.htm)

• Analytical/Empirical:

 Berkeley (Borenstein, Bushnell, Oren,...); Cambridge (Green, Newbery,...); DOE (POEM/MAPS model,...); EPRI (Chao, Peck,...); Harvard (Hogan,...); MIT (Joskow,...); U of Oslo (Halseth, von der Fehr,...); Stanford (Wilson, Wolak,...); many others ...

• Human-Subject Experiments:

- Cornell (Mount,...); George Mason U (Rassenti, Smith, Wilson,...); others ...
- Dynamic Simulation:
 - EPRI/DOD (CIN/SI,...); Sandia (Baker, other USEGM researchers,...); Simon Fraser Univ. (Jaccard, Nyboer, Rivers,...); many others...

Agent-Based Electricity Research (www.econ.iastate.edu/tesfatsi/aelect.htm)

- Argonne National Lab (Boyd, Cirillo, Conzelmann, Koritarov, Macal, North, Thimmapuram, Veselka,...)
- Carnegie Mellon University (Hines, Illic, Talukdar,...)
- CSIRO-Australia (Batten,...)
- Helsinki University (Hamalainen,...)
- Iowa State University (Koesrindartoto, Sheble, Tesfatsion,...)
- London Business School (Bunn,...)
- Los Alamos National Lab (Barrett, Marathe,...)
- Pacific Northwest National Lab (Fathelrahman, Roop,...)
- Sandia National Lab (NISAC/N-ABLE group,...)

Potential Contributions of Agent-Based Approach for Studying FERC's WPMP

- Generators, load-serving entities, ISO,... can be modeled as strategically interacting agents.
- Agent learning can be calibrated to data.
- Agents can alter their behaviors/interaction networks over time in response to events.
- Relatively easy to include actual structural features and actual market design protocols. (models should be simple but not too simple!)

Our ACE Wholesale Power Market Model

- Based on Standard Market Design (SMD) implemented by New England (ISO-NE) on March 1, 2003
- SMD meets basic WPMP structural requirements:
 - Independent System Operator (ISO)
 - Day-ahead and real-time electricity markets
 - Congestion managed via LMP
 - Financial Transmission Rights
 - Planned reserve and capacity markets as well as enhanced demand response

Slide: 13

Our ACE Wholesale Power Market Model

Traders

- Sellers and Buyers
- Follow market rules
- Learning abilities

ISO roles

- Reliability assessment
- Security-constrained dispatch
- Settlement procedures
- Market power oversight

Multi-settlement process

- Day-ahead electricity market
- Real-time electricity market
- Supply re-offer period

AC transmission grid

- Congestion managed via LMP
- 5-bus demo model (scalable to a more complex grid)

5-Bus Transmission Grid (Demo Model)

Slide : 14

Slide : 15 LSEBot: A Virtual Buyer

Public Access:

// Internalized Market Protocols Protocols for communication with ISO Protocols governing submission of demand bids Protocols for ISO market power oversight and mitigation

Private Access Only:

// My behavioral methods
 My method for calculating my expected profits
 My method for calculating my actual profit outcomes
 My demand bid updating method (my learning mode)

 // My attributes (data)
 My downstream demand, bus location, current wealth...
 Data recorded about external world (dispatch schedule...)

Addresses for ISO, other traders (permits communication)

GenBot: A Virtual Seller

Public Access:

// Internalized Market Protocols
 Protocols for communication with ISO
 Protocols governing submission of supply offers
 Protocols for ISO market power oversight and mitigation

Private Access Only:

// My behavioral methods

 My method for calculating my expected profits
 My method for calculating my actual profit outcomes
 My supply offer updating method (my learning mode)

 // My attributes (data)
 My capacity, bus location, cost fct., current wealth...
 Data recorded about external world (dispatch schedule...)
 Addresses for ISO, other traders (permits communication)

Slide : 19

Experimental Design: Treatment Factor Ranges

- DC Approximation for LMP
 (Typical practice/lit. assumption)
 - AC Approximation for LMP (Closer to physical situation)
- Cournot supply behaviour
 (Typical literature assumption)
- Passive inelastic demand (Typical literature assumption)
- General strategic supply beh. (Actual ISO-NE situation)
 - Strategic LSE demand bids (Actual ISO-NE situation)
- No transmission rights
 (Typical literature assumption)
- Financial Transmission Rights (Actual ISO-NE situation)

Project Objectives: Summary

- FERC's Wholesale Power Market Platform (WPMP) is a complex market design
 - a wholesale power market with day-ahead, real-time, and ancillary markets operating over an AC transmission grid.
- An agent-based computational laboratory is being developed for the WPMP
 - will permit the systematic experimental exploration of WPMP design features (as implemented in ISO-NE)
- Project focus on dynamic economic reliability
 - the ability of the WPMP market design to ensure efficient, fair, and orderly market outcomes over time when market participants have realistic strategic capabilities.