Information Effects on Residential Energy Conservation: A Japanese Experiment

Isamu Matsukawa

Musashi University

OVERVIEW

- Kyushu experiment
- Discrete-continuous model of display usage and electricity demand
- Data and estimation method
- Information effects on energy conservation

The Kyushu experiment(1)

- The New Energy and Industrial Technology Development Organization and the Kyushu Electric Power Company jointly conducted an experiment.
- Households could obtain information on efficient usage of electric appliances through a display at their dwellings.

The Kyushu Experiment(2)

- Eight programs of efficient usage of electric appliances were provided through the display.
- Usage of the display was recorded when participants activated the display at least once each month.

Table 1. Examples of Information on Efficient Usage of Electric Appliances

Appliances	Items	Suggestions	
Room air conditioners	Filters	Clean up a filter of an air conditioner at least once in two weeks.	
	Timers	Use a timer to operate an air conditioner only when heating or cooling is necessary.	
Refrigerators	Food Storage	Do not store too much food in a refrigerator.	
	Cleaning	Keep clean the door packing of a refrigerator.	
TV sets	Brightness	Do not make the screen too bright.	
	Operation	Turn off a TV set when not watching.	
	Standby	Unplug a TV set to save standby power.	
	Power		

Discrete-Continuous Model of Display Usage and Electricity Demand

- No costs of display installation and usage
- Costs of time and efforts vs. energy cost savings through efficient usage of appliances
- Discrete choice of display usage: described by a conditional indirect utility function
- Continuous demand for electricity: applying Roy's identity to the conditional indirect utility function and consistent with economic theory

Translog Indirect Utility Function of Display Usage and Electricity Consumption

$$V^{k}_{it} = -a_{e} \log(p_{eit}/y_{i}) - a_{z} \log(p_{zit}/y_{i}) - 0.5 b_{ee} [\log(p_{eit}/y_{i})]^{2}$$

$$-0.5 b_{zz} [\log(p_{zit}/y_{i})]^{2} - 0.5(b_{ez}+b_{ze})[\log(p_{eit}/y_{i})] [\log(p_{zit}/y_{i})]$$

$$-a_{em} \log(p_{eit}/y_{i})M^{k} - (a_{ex}X1_{it})\log(p_{eit}/y_{i}) - (a_{zx}X1_{it})\log(p_{zit}/y_{i})$$

$$+c^{k}X2_{it} - w_{eit} \log(p_{eit}) - w_{zit}\log(p_{zit}) + e^{k}_{it}$$
(2)

Cost Share Equation of Electricity

$$CS_{it} = [a_e + b_{ee} \log(p_{eit}) - (b_{ee} + b_{ez}) \log(y_i)$$

$$+ a_{em} (d_{it} M^1 + (1 - d_{it}) M^0) + a_{ex} X 1_{it}] / D + (w_{eit} / D)$$

$$(4)$$

$$D = 1 + (b_{ee} + b_{ez}) \log(p_{eit}) - (b_{ee} + b_{zz} + 2b_{ez}) \log(y_i)$$

Econometric Considerations

- Marginal price of electricity: using a predicted value to correct for bias
- Display usage dummy: adding a Heckman-type correction term to the cost share equation to correct for bias
- Full information maximum likelihood estimation: asymptotically unbiased and efficient

Data

- Pooled data of 194 households and three months (July, August and Sept.) in 1996
- Random sampling: households living in Fukuoka City, Japan
- Average electricity usage: 10~16 kWh/day
- Households using the display: 60~80 %

Estimation Results of Electricity Cost Share Equation

item	estimate	significance
a_{em} : display usage	-0.132	1%
a_e : constant	0.202	1%
b _{ee} : log price	0.349	1%
Price elasticity	-0.61	1%
Income elasticity	0.55	1%

Conservation Effects of Information Provision

- Information provision: reduce daily electricity usage by 0.14 kWh (1.1%)
- Engineering estimate of conservation for a refrigerator: 4~5% through appropriate storage of food
- Difference between econometric and engineering estimates: information associated only with some major appliances, not perfectly implement energy conservation activities

Conservation Effect of Information: Comparison

- Sexton et al. (1989): information on *electricity* costs reduced peak usage of electricity
- Matsukawa (2004): information on *hourly* electricity usage reduced summer electricity consumption
- This paper: information on *efficient usage of appliances* reduced summer electricity consumption

Conclusion

- The Kyushu experiment: providing households with information on efficient usage of electric appliances
- Conservation effect: relatively modest effect of information provision on energy conservation