

Economic, Commercial and Regulatory Aspects of the Integration of Distributed Generation: A UK perspective

Goran Strbac, UMIST, UK Jim Watson, SPRU, University of Sussex, UK

USAEE/IAEE North American Conference, Washington, DC, 8-10 July 2004

- **1. Why is Distributed Generation important now ?**
- 2. The need for a new regulatory approach
- **3. From passive to active distribution networks**
- 4. Outline of some new incentives

UK Government's objectives for energy policy

Energy White Paper (2003):

- To put the UK on a path to cut C0₂ emissions by 60% by about 2050 with real progress by 2020
- to maintain the reliability of energy supplies
- to promote competitive markets in the UK and beyond, helping to raise the rate of sustainable economic growth and to improve our productivity
- to ensure that every home is adequately and affordably heated

One expected impact: Large increase in DG

- Some 10GW of various forms of DG expected by 2010; More in subsequent years
- Result of government support for renewables and cogeneration
- DG to assume responsibilities for system support
- DG to be considered in network replacement and development

Key Challenge: Cost effective integration of DG in operation and development of the system

Connecting DG in the UK: Present situation

- Limiting factors for connecting DG
 - In urban areas: Fault levels
 - In rural areas: Voltage rise effect
- Connection cost is related to voltage level at which DG is connected
- Conflicting objectives
 - Distribution network operator- minimise the impact of DG on networks (connect to as high voltage level as possible)
 - Distributed Generation minimise connection cost (connect to as low voltage level as possible)
- Effect is prohibitive connection costs for many DG projects

Long term goal: From Passive to active networks?

6

- Designed to accept bulk power from transmission system and distribute to customers
- Generally with unidirectional flows some interconnected
- Ad hoc approach with existing practise ("fit and forget")
 - No control over DG
 - Worst case scenarios condition for connection (maximum generation minimum load)
 - Limits capacity of DG that can be absorbed by networks
- Active distribution network
 - Local, coordinated control of voltage, flows and fault levels
- Dilemma: Invest in distribution network primary plant or make it more intelligent through active management

Potential benefits of active management

Incremental investment cost of upgrading the network

(including cost of active management systems in £m):

	Low Density		High Density	
	Р	Α	Р	Α
Capacity of DG:				
2.5GW	0	0	0	0
5GW	0	0	238	124-136
7.5GW	100	80	359	293-310
10GW	243	80	562	416-434

Levelling the Playing Field

- Role of distribution networks to facilitate competition
- Financial separation of distribution businesses (DNOs)
- Regulatory reforms by Ofgem
 - Performance based regulation
 - Design of incentive schemes for DNOs to connect DG

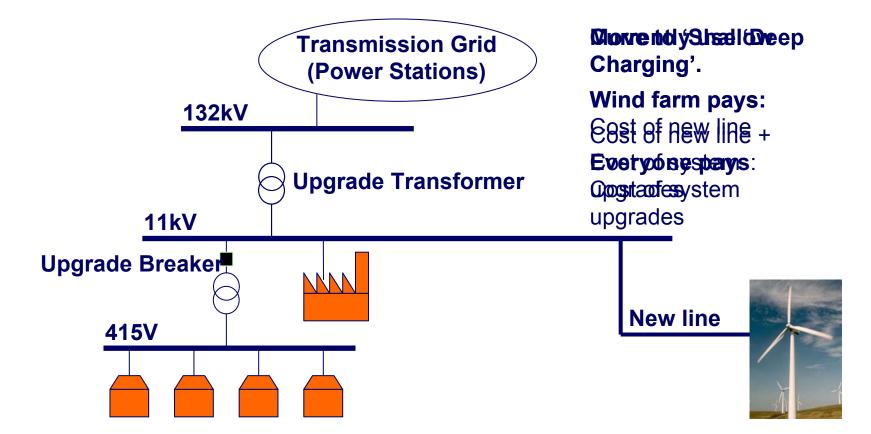
Commercial integration

- New approaches to network pricing
- Security standards reviewed to recognise the ability of DG to displace network capacity

Technical integration

 Coordinated operation of network with DG as part of move to active management

Key regulatory changes



- A series of reforms are being implemented in 2005 as part of the next regulatory price control:
 - The objectives of the incentive scheme are to encourage DNOs to undertake the investment required to facilitate distributed generation connections and invest efficiently and economically in the their system.
 - The proposals provide protection to companies, with 70-80 percent pass-through of costs, with an incentive rate of £2-3.5/kW/year.
- Other developments
 - A move away from 'deep' connection charges for DG
 - New incentives for R&D and demonstration projects

From deep to shallow charging

R&D Initiatives

- Innovation Funding Incentive (IFI)
 - designed to encourage DNOs to invest in appropriate R&D activities that focus on the technical aspects of network design, operation and maintenance. Cost pass through of 90%, falling year by year. Max spend 0.5% of turnover.
- Registered Power Zones (RPZ)
 - designed to encourage DNOs to develop and demonstrate new, more cost effective ways of connecting and operating generation. Two applications per DNO per year allowed. Incentive of £4.5/kW of DG (up to 3x normal DG rate).

Will this be enough?

- Ofgem's new approach is radically different from the regulatory practice of the 1990s
- R&D incentives a unique experiment but will they be enough to revive network R&D in the UK ?
- Much depends on detailed implementation and interpretation of rules
- Additional steps will be required e.g. to enable new markets for active management services
- To meet White Paper objectives, may need further integration of environmental goals in economic regulation