Interaction of Oligopolistic Transmission–Constrained Power Markets with Renewable Portfolio Standards, Green Pricing Programs, & Emission Allowances

Yihsu Chen Benjamin F. Hobbs

24th Annual North American Conference of USAEE/IAEE Washington, DC

Dept. Geography & Environmental Engineering Whiting School of Engineering The Johns Hopkins University Baltimore, MD USA

Outline

- Questions
- Model Structure and Computation
 Approach
- Application
- Results

Questions of Interest

Accounting for the interactions of

- transmission constraints & energy markets
- green power
- renewable portfolio standards
- NO_x markets,

... the following questions are addressed:

- What is the impact of market power on prices of energy (grey, green premium), renewable energy credits (RECs), and No_x allowances?
- What is the impact on <u>social surplus</u>?
- What is the magnitude of productive inefficiency?
- What is the <u>rationale</u> for players' behavior in markets?

Model Structure and Computational Approach: Direct Solution of Equilibrium Conditions

- 1. Derive 1st-order conditions for each player
- 2. Impose market clearing conditions
- 3. Solve resulting system of conditions (complementarity problem) with PATH

Application Background PJM Market and USEPA NO_x Program

PJM Market (2000)

- Peak: 49,000 MW
- Average Price: 30.7 [\$/MWh]
- Moderate Concentrated: HHI ~ 1,500
- 14 node, 18 arc system
- 9 producers
- 80% sales either forward contracted, or by vertically integrated firm

USEPA *NO_x* **Program**

- Cap-and-Trade
- May 1st Sep. 30th (3,672 hrs)
 - Approximated by 5 load periods
- 9 States in 2000

Green Pricing Programs

Green Power Marketing Activity in Competitive Electricity Markets

Utility Green Pricing Activities

- 29 marketers offering green power (8 States and DC)
- Retail green premium: 0.5-2.5 ¢/kWh
- 0.028% of total US sales (2001)

- >350 utilities in 33 states offer green pricing programs
- Utility green premium: 0.7- 17.6 ¢/kWh
- 0.017% of total US sales (2001)

Source: L. Bird and B. Swezey, "Green Power Marketing in the United States: A Status Report", Sixth Edition, NREL. Available

Renewable Portfolio Standards (RPS)

Source: Union of Concerned Scientists, available at

- 14 states mandate RPS
- RPS requirement differs by state, e.g.,
 - <u>30% by 2000 in ME</u>
 - <u>1.1% by 2002 in AZ</u>
- 5 States allow trading in renewable energy credits (RECs)

Scenarios Investigated for PJM

We assume a RPS of 5.5% under four competition scenarios:

Scenario\Market	Grey Power Market	Green Power Market	NO _x Permits Market
Comp.	Price-Taking	Price-Taking	Price-Taking
MP Grey	Cournot	Price-Taking	Price-Taking
MP/G/G	Cournot	Cournot	Price-Taking
MP/G/G/NO _x	Cournot	Cournot	Conjectured
			Response

Results: Price Comparison

REC Price

NOx Permit Price

Welfare Analysis Compared to Competitive Scenario

Efficiency Comparison Compared to Competitive Scenario

Productive Inefficiency

Productive Inefficiency

Increase in cost relative t least-cost means of serving MW demands for green & grey energy

Market power leads to: 7.0%-7.6% productive inefficiency

Player's Strategies

<u>**PECO**</u> largest in power, longest in permit and RECs Markets (modeled with Cournot and NO_x conjectured price response)

<u>MP Grey → MP/G/G (Add MP in Green)</u>

PECO restrains green output and increases grey output

 $\boldsymbol{p}^{REC} \uparrow (0 \rightarrow 31\% / \boldsymbol{MWh})$ $\boldsymbol{p}^{E} \downarrow (27.1 \rightarrow 26.3\% / \boldsymbol{MWh})$

PECO <u>worse</u> off CS goes up (lower p^E) PS goes down SW goes up

Player's Strategies

<u>PECO</u> largest in power, longest in permit and RECs Markets (modeled with Cournot and NO_x conjectured price response)

MP Grey → MP/G/G (Add MP in Green) **PECO** restrains green output and increases grey ou<u>tp</u>ut $p^{REC} \uparrow (0 \rightarrow 31\$ / MWh)$ $p^E \downarrow (27.1 \rightarrow 26.3 \$ / MWh)$ **PECO** worse off CS goes up (lower p^E) PS goes down SW goes up

<u>MP/G/G \rightarrow MP/G/G/NO_x (Add MP in NO_x)</u> PECO expands output, sells fewer NO_x permits p^{NO_x} \uparrow (1,187 \rightarrow 1,255\$/*ton*) $p^{E} \downarrow (26.3 \rightarrow 26.2 \$ / MWh)$ PECO better off CS goes up (lower p^E) PS goes down SW goes up

Conclusion

- Interactions of electric (grey and green), RECs, and NO_x markets can be investigated by Cournot and conjectured NO_x pricing assumptions in a large-scale model (20,000 variables)
- Detailed market representation allows a variety of welfare and efficiency analyses, and insights on players' strategies
- Next:
 - variable wind outputs
 - suppliers' long-term investment decisions under various oligopoly scenarios

QUESTIONS AND COMMENTS?

