Energy Price Distortions in Iran

The scope and objectives of pricing

- social welfare considerations can not be attained without rational pricing mechanism
- energy
 conservation can
 not be realized by
 improper energy
 pricing

- optimal investment decisions is based on demand fulfillments and this will not be realized with distorted energy prices
- energy subsidization will barricade optimal resource allocation

mechanisms considered in order to decrease energy consumption growth rate

- price distortions (subsidy) removal which is concerned with pricing mechanism
- Autonomous Energy Efficiency Improvement (AEEI) which represents a non-pricing mechanism
- Regarding price distortions removal policy, the important issue is estimation of shadow price and its difference with domestic market prices

Autonomous Energy Efficiency Improvement

- potential increase in non-price efficiency improvements
- decrease in the energy system supply costs
- based on endogenous growth and learning by doing model
- Market barriers such as asymmetric information and transaction costs should be removed

Iran's present situation

- state-owned for many years
- the government has responsibility for production, transmission and distribution of all kinds of energy
- sufficient energy is imported by the government to fulfill demand
- All investments needed for the development of energy sector are financed and managed by the government
- energy pricing mechanism is government oriented and is supported by on-budget subsidies

Iran's present situation(continued)

- off-budget subsidies are less transparent and generally more variable over time than onbudget subsidies
- the energy price is determined in a socioeconomic context with severe political considerations
- all the prices are distorted from their marginal costs

Table 1. The ARDL models results for energy consumption in Iran

Energy Carriers	Gasol ine	Gas oil	Kerose ne	LPG	Fuel oil	Natur al Gas	Electri city
Variables	1 0 2	0.6	0.01	0.10	2.46		
Intercept	1.02 (3.5)	$(1.04)_{14}$	0.91 (0.98)	0.10 (0.19)	(2.51		
Δ LGDP		(3.12)	0.51 (3.68)	0.22 (2.77)		0.38 (3.07)	0.41 (5.5)
ΔLVAT	0.18 (3.89)						
ΔLVAIM					0.17 (5.7)		
Δ LRPGA	(- 4.01)						
Δ LRPKE			-0.005 (0.06)				
Δ LRPGO		-0.10 (- 1.57)					
Δ LRPF					(- 1.45)		
∆ LRPLPG				(- 3.56)			
Δ LRPNG						-0.1 (-0.64)	
Δ LRPEL							-0.02 (-0.60)
D 68						0.48 (2.33)	
Ect (-1)	-0.19 (- 5.82)	-0.19 (- 2.30)	-0.52 (-4.42)	-0.21 (- 6.39)	-0.35 (- 2.82)	-0.34 (-3.17)	-0.06 (-2.32)

Table 2. Cointegrated vectors for energy
consumption

	Cocolino	Casail	Kerose	LPG	Fuel	Natural	Electricit
Energy	(LGa)*	(LGo)	ne (IKE)	(LLPG	oil	Gas (LNC)	y (IEI)
Carriers	5 5 1	2.11	(LKE)	,	(LF) 7.09	(LNG)	(LEL)
Yntiables	-5.51	-3.11	-1./4	-0.49	-7.08		
	(3.7)	(1.20)	(1.05)	(0.18)	(7.03)		
LGa	11	1					
LGo							
LKE			1				
LLPG				1			
LF					1		
LNG						1	
LEL							11
		-0.95	-0.98	-1.04		-1.11	-1.23
LGDP		(3.7)	(5.55)	(3.83)		(21.41)	(36.11)
TVAT	-0.97						
LVAI	(5.96)						
LVAIM					-0.49 (3.76)		
IDDCA	0.47						
LRPGA	(-3.05)						
			0.27				
LRPKE			(-4.55)				
		0.51					
LRPGO		(-3.93)					
		(3.95)			0.21		
LRPF					0.21		
					(-2.34)		
LRPLPG				0.56			
_				(-5.74)			
LRPNG						0.29	
						(-0.73)	
							0.34
LKFEL							(-0.78)

Energy demand modelling results

- In Gasoline demand all shortand long-run price elasticities are less than unity
- Adjustment coefficient is estimated –0.19 indicating that occurrence of shock takes at least 5 years to be removed
- The largest adjustment coefficient is for kerosene demand

Energy demand modelling results(continued)

- The short run price elasticity of kerosene demand is insignificant, indicating unimportant role of price in the short run
- All findings based on cointegration approach indicate that energy price distortions removal (in fact, subsidization removal) can not play an effective role in energy conservation in Iran

A contradiction

- For a considerable energy conservation plan, a great deal of energy price adjustment will be needed
- extraordinary energy price adjustment will certainly cause great inflationary impact simultaneously

The inflationary impact of energy price adjustment

- In the year 2000, while the gasoline price was 4.8 ¢ per liter the optimal price was determined at 15 ¢ per liter
- the size of distortions for kerosene, gas-oil, fuel oil, LPG, natural gas, and electricity considering their conventional units were 13.1, 13.1, 7.29, 28.3, 3.16, and 6.19 ¢ per unit, respectively
- Total distortion for these seven energy carriers is equivalent to US\$11.9 billion

The inflationary impact of energy price adjustment(continued)

- In order to compute the inflationary impact of energy price adjustment, an energy Input/Output model has been used
- The results show that removing energy price distortions will cause an inflation growth at a rate of 65.55%.

POLICY IMPLICATIONS AND CONCLUSIONS

- To realize successful energy efficiency plan, the energy price distortions removal is necessary condition but other market barriers should also be concentrated on
- Energy price distortions (subsidization) removal will cause inflationary impact, inducing welfare decreasing
- Autonomous energy efficiency improvement will provide an appropriate background for effective energy pricing policies