An Optimum Fuel Consumption Model for the Transport of Cargoes by Road Vehicles by Mahmoud Saffarzadeh and Abdolreza Rezaee-Arjroody

For Presentation at: The 26th Annual Conference International Association for Energy Economics, Prague, Czech Republic June 4-7, 2003

Introduction:

Energy Consumption in Transportation

- 40% of Total Energy, 23% Direct, 17% Indirect
- 40% of Total Fossil Fuels
- Road Transportation is the Largest Fuel Consumer
- 25 Trillion Liters of Consumed Fuel in 2001 in Iran
- Figures 1,2,3

Figure 1: Energy Consumption in Major Sectors

Figure 2: Energy Consumption in Transportation (Million barrel)

MILLION BARREL

Figure 3: Forecast of Fossil Fuel Consumption In Iran

Factors Affecting Fuel Consumption in Road Transportation

- Geometric Design of Highways (Slope, Alignment, Surface,...)
- Traffic Flow Characteristics (Volume, Density)
- Vehicle Characteristics (Speed, Weight, Type,..)
- Fuel Type (Diesel, Gasoline, CNG,..)
- Driver Behavior (Acceleration, Deceleration, Education)
- Environmental Parameters (Rain, Temperature, Snow...)

Literature Review: a) Drivers' Behavior Models:

 $G = f_1 L + f_2 D + f_3 S$

- G = Consumed fuel for each car during the traveled distance
- L = Whole traveled distance
- D = Static delay for each car
- S = Number of stops
- f₁ = Rate of fuel consumption in distance unit
 during action (travel)
- f₂ = Rate of fuel consumption in time unit during static case
- $f_3 = Utilized extra fuel for decreasing the speed$ to stop or increasing speed to reach travelspeed.

b) Gary Hicks and Clarkson Model

$$Q_m = 16.57 \times P_m \times V^{-1} \times \exp(0.0195V)$$

Q_m = the average fuel consumption rate of the vehicle type m on the basis of liter per 100km.

P_m = the average fuel consumption rate of vehicle type m, with the speed of 30 km/hr.

V = the average speed of the vehicle

Research Methodology

- List of Parameters in the Vehicle Speed
- Selection of Effective Variables
- Analysis of Collected Data from 41 Roads
- Development of Alternative Speed Models
- Selection of Optimum Fuel Consumption
 Model

Table 1: Variables Used in Estimation of Models

No	Variable	Function Type Used in the Model	Unit
1	Average slope	ТОРО	-
2	Width of the road	W	Meter
3	Sight distance	SIGHT-DIS	-
4	Shoulder	ADGE	Meter
5	Right of Way	WAYSIGHT	Meter
		M=Mountain	
6	Topography of the Road	L=Land	
		T=Terrain	-
7	Total Passenger Car Equivalent	PCE TOTAL	PCE
8	Passenger Car Equivalent for Trucks	PCE TRUCK	PCE
9	Ratio of Truck PCE to Total PCE	PCE TRUCK	
		PCE TOTAL	-
10	Level of Service	L.O.S.	-

Figure 4: Function of Speed-Fuel Consumption

Table 2: Comparison Between Linear andLogarithmic Functions

Linear fu	unction	Logarithmic function		
Variables	Selected Model	Variables	Selected Model	
Fixed	64.96	Ln(Fixed)	57.672	
	(8.489)		(16.101)	
ADGE	4.327	Ln(ADGE)	8.638	
	(1.816)		(1.956)	
ТОРО	-3.377	Ln(TOPO)	-11.729	
	(-9.237)		(-8.635)	
L.O.S.	-15.77	Ln(L.O.S.)	-1.918	
	(-3.421)		(-2.432)	
PCE TRUCK	-5.94	PCE TRUCK	-3.95	
PCE TOTAL	(-1.048)	$\begin{bmatrix} Ln[($	(-0.948)	
\mathbb{R}^2	0.8	\mathbb{R}^2	0.79	
SE	2.83	SE	2.87	
F	36.92	F	35.25	
N	41	N	41	

Alternative Models

a) Linear

 $V = 65 + 4.3(ADGE) - 3.4(TOPO) - 15.8(L.O.S.) - 5.9(\frac{PCETRUCK}{PCETOTAL})$

b) Logarithmic

$$V = 57.7 + 8.6(ADGE) - 11.7(TOPO) - 1.9(L.O.S.) - 3.9(\frac{PCETRUCK}{PCETOTAL})$$

c) Optimum Model

For Speed: V=65+4.3(ADGE)-3.4(TOPO)-15.8(L.O.S.)-5.9

d) For Fuel Consumption

 $Q = 62.8 \times \frac{EXP[[65 + 4.3(ADGE) - 3.4(TOPO) - 15.8(L.O.S.) - 5.9(\frac{PCE TRUCK}{PCE TOTAL})]0.0195]}{[65 + 4.3(ADGE) - 3.4(TOPO) - 15.8(L.O.S.) - 5/9(\frac{PCE TRUCK}{PCE TOTAL})]}$

Conclusions and Recommendations

- Heavy Vehicles Fuel Consumption Depends on Many Variables From Which Some Important Ones Have Been Selected.
- Summary of Results, Table 3-1, 3-2

Table 3-1: The Impact of Model Variables on the Fuel Consumption

Variable	Increase of the Variable for Optimizing the			Increase of the
	Fuel Consumption			Speed (Km/hr)
AGDE	0.5m Shoulder	0.20	0.002	2.16
	Increase			
TOPO	1% Decrease of the	0.487	0.00487	3.337
	Slope			
L.O.S.	0.1 Increase in L.O.S.	0.0119	0.000119	-1.577
TRUCK TOTAL	1% Decrease of	0.01	0.0001	0.06
	Trucks Ratio to Total			

Table 3-2: The Impact of Model Variables on the Fuel Consumption

Variable	Decrease of the Variable to Increase the			Decrease of the Speed
	fuel Consumption			(Km/hr)
AGDE	0.5m Shoulder Increase	0.20	0.002	2.16
	No Shoulder	1.037	0.01037	10.82
ТОРО	1% Slopes as	0.487	0.00487	3.377
	Compared to 0			
L.O.S.	0.1 Decrease in L.O.S.	-0.0341	-0.000341	-1.577
PCE TRUCK PCE TOTAL	1% Increase of Trucks Ratio to Total	0.01	0.0001	0.06

Finally Combination of Fuel Consumption Model and Traffic Management Models Can be Used For Transportation Network Planning, Regarding the Cost and Frugality In Fuel Consumption.

Thank you for your Patience