Benchmarking & Regulation in Energy Industry: An Overview

Tooraj Jamasb

http://www.econ.cam.ac.uk/electricity/

IAEE, 26th Annual Conference
4-7 June 2003, Prague
Outline

- Introduction
- Benchmarking methods
- From benchmarking to price setting
- Current issues and conclusions
Benchmarking

- What is benchmarking (BM)?
 - Comparison of ‘actual’ performance of a DMU relative to a ‘reference or benchmark’ performance

- Benchmarking what?
 - Performance dimensions e.g. cost, investments, quality
 - Total vs. partial

- Benchmarking approaches
 - Unlinked vs. cost-linked
 - Average vs. frontier

- The techniques
 - OLS (average), COLS (frontier), SFA (frontier)
 - DEA (frontier)
How is benchmarking used in energy industry?

- Assessing the efficiency of:
 - Electricity - generation, transmission, distribution systems
 - Gas - Networks and pipelines
 - Oil - Refineries
- Public and private companies
- Internal (voluntary) and external use
- Public utility regulation
Many electricity regulators have made some use of BM

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Ireland</td>
<td>USA - California</td>
</tr>
<tr>
<td>Denmark</td>
<td>Hungary</td>
<td>Brazil</td>
</tr>
<tr>
<td>Canada – Ontario</td>
<td>Italy</td>
<td>Chile</td>
</tr>
<tr>
<td>Finland</td>
<td>Spain</td>
<td>Colombia</td>
</tr>
<tr>
<td>Norway</td>
<td>Sweden</td>
<td>India</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>England & Wales</td>
<td>Victoria</td>
<td></td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>Queensland</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tasmania</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NSW</td>
<td></td>
</tr>
</tbody>
</table>

Jamasb and Pollitt (2001)
Data Envelopment Analysis (DEA)

- Measures the distance between the frontier of best-practice firms and the scatter of less efficient Decision-Making Units (DMUs)
- Ascribes deviation from the best-practice frontier to inefficiency
- Overall inefficiency can be broken down into:
 - technical and allocative inefficiency
 - scale, and “pure” technical inefficiency
- Can be either input or output-oriented
DEA in practice

Capital per unit of output

- K/Y

Labour per unit of output

- L/Y

Firm R: Techn. eff. = OJ/OR
Alloc. eff. = OM/OJ
Tot. econ. eff. = OM/OR

* Source: DTe (1999)
Econometric techniques

- A cost (or production) equation is estimated
- OLS: Regression analysis identifies a central tendency or an “averaged function”
- COLS: A function is estimated, then shifted, so that the firms lie on or above the frontier
- SFA: Uses ML technique and estimates an efficient frontier that splits performance differences into:
 - measurement error and/or stochastic shocks, and
 - firm inefficiency
OLS in practice

Cost, C

Output, Y

C=f_1(Y)
C=f_2(Y)
C=f_3(Y)

= Regulated firm
How is BM used in regulation?

- In a price/revenue cap $P_1 = P_0 * (1 + \text{RPI-X})$ model the regulator needs to set:
 - P_0 - the initial price in the first year of the period
 - X-factors - the rate of price decline (Glide Path)

- The regulator decides the scope of one off P_0 adjustments and the X factors to be set

- Individual X-factors still need to decide:
 - WACC and uncontrollable costs
 - General productivity component of X-factor

- Allowed revenues may need to be adjusted for:
 - Quality of service and windfalls w. sharing schemes
Allowed revenue and X-factor

Actual Revenue 2000

Actual Opex

Allowed Revenue

Eff. Opex

Depreciation

WACC x RAB

X factor

Frontier Shift

2000

2005
From BM to X setting: NORWEB

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Network capex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Connection charges</td>
<td>-9</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-9</td>
<td></td>
</tr>
<tr>
<td>3 Net network capex</td>
<td>81</td>
<td>87</td>
<td>91</td>
<td>92</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>4 Opening asset value</td>
<td>720</td>
<td>719</td>
<td>739</td>
<td>782</td>
<td>821</td>
<td></td>
</tr>
<tr>
<td>5 Depreciation</td>
<td>-83</td>
<td>-67</td>
<td>-48</td>
<td>-53</td>
<td>-57</td>
<td></td>
</tr>
<tr>
<td>6 Net network capex</td>
<td>81</td>
<td>87</td>
<td>91</td>
<td>92</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>7 Closing asset values</td>
<td>719</td>
<td>739</td>
<td>782</td>
<td>821</td>
<td>853</td>
<td></td>
</tr>
<tr>
<td>8 Return</td>
<td>47</td>
<td>47</td>
<td>49</td>
<td>52</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>9 Depreciation</td>
<td>83</td>
<td>67</td>
<td>48</td>
<td>53</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>10 Operating costs</td>
<td>111</td>
<td>104</td>
<td>102</td>
<td>100</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>11 Total</td>
<td>240</td>
<td>218</td>
<td>199</td>
<td>205</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>12 PV of totals</td>
<td>918</td>
<td>232</td>
<td>197</td>
<td>169</td>
<td>163</td>
<td>157</td>
</tr>
<tr>
<td>13 Base price control rev</td>
<td>261</td>
<td>194</td>
<td>190</td>
<td>186</td>
<td>183</td>
<td>179</td>
</tr>
<tr>
<td>14 Excluded revenue</td>
<td>32</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>15 Total rev (excl DIVIS)</td>
<td>293</td>
<td>221</td>
<td>217</td>
<td>213</td>
<td>210</td>
<td>206</td>
</tr>
<tr>
<td>16 PV of totals</td>
<td>918</td>
<td>214</td>
<td>198</td>
<td>182</td>
<td>168</td>
<td>155</td>
</tr>
<tr>
<td>17 Adj price control rev</td>
<td>261</td>
<td>193</td>
<td>190</td>
<td>186</td>
<td>183</td>
<td>179</td>
</tr>
<tr>
<td>18 DMS revenue</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>19 Total rice control rev</td>
<td>270</td>
<td>199</td>
<td>195</td>
<td>192</td>
<td>188</td>
<td>184</td>
</tr>
<tr>
<td>20 P_0's and X values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P_0</td>
<td>27%</td>
<td>X</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Current issues (1): International benchmarking

- Many jurisdictions with too few domestic comparators
- Reduces the effect of M&A on efficiency scores and loss of information
- Enables regulators to use a wider range of techniques
- Can measure performance relative to world best practice
- Can shed light on distinctive features of the sector e.g. operating environment, regulatory framework, scale of firms
Regulatory implications of cross-jurisdictional BM

- Standardisation of cost and technical data problematic across countries
- Continuity - commitment to long-term co-operation
- Trust - should be able to rely on each others’ quality of data and timing of submission
- Increased transparency and possibilities for dissemination of data and results
- Increased convergence likely as same set of data will encourage standardisation of technique and model

Jamasb and Pollitt (2002)
Current issues (2): Choice of technique and process to X-factor

- At present, no one best measure - the issue of choosing the best method can not be settled on theoretical grounds

- The practical nature of the issue underlines the importance of “processual” aspect of utility benchmarking and regulation

- Good process - transparent, participatory, consensus-based
Consistency conditions for assessing methods

☐ Different approaches should have comparable means, standard deviations and distributional properties.

☐ Different approaches should rank firms in approximately the same order.

☐ Different approaches should identify mostly the same firms as best and worst practice.

☐ All approaches should demonstrate stability over time.

☐ Efficiency scores should be consistent with competitive market conditions.

☐ Measures should be consistent with non-frontier performance measures.

Bauer et al. (1997)
Current issues (3): models and new directions

- Appropriate models and input and output variables
- Appropriate handling of OPEX and CAPEX
- Sensitivity of results to errors/stochastic factors (e.g. SDEA)
- Inclusion of quality of service in revenue caps
- Intra-country state-level BM (e.g. USA, Brazil, India)
- Intra-firm BM (e.g. France, Italy)
Current issues (4): Company strategy under BM

- Recognise that price review is a negotiation and is not subject to legal standards of proof
- The regulator is in the superior position:
 - Legislative backing
 - Political support
 - Future reviews
- Techniques not robust and subject to specification and measurement errors
- Avoid measurement errors by providing accurate data
- Engage in debate about model specification
- Check information provided and verify workings
- Produce own analysis
Benchmarking & Regulation in Energy Industry: An Overview

Tooraj Jamasb

http://www.econ.cam.ac.uk/electricity/

IAEE, 26th Annual Conference
4-7 June 2003, Prague