Efficiency and Regulation of Electricity and Gas Distribution Companies

How to use efficiency measurement in regulation?

Panel

• Tooraj Jamasb:

Benchmarking and Regulation in Energy Industry: An Overview

• Einar Hope:

Benchmarking and regulation: Pitfalls and issues in electricity regulation

• Massimo Filippini and Mehdi Farsi:

Regulation and Measuring Cost Efficiency with Panel Data Models: Application to Electricity Distribution Utilities

Regulation and Measuring Cost Efficiency with Panel Data Models: Application to Electricity Distribution Utilities

Annual conference of the International Association for Energy Economics Prague 2003

Massimo Filippini and Mehdi Farsi

Center for Energy Policy and Economics Swiss Federal Institutes of Technology ETH Zentrum, WEC CH-8092 Zurich, Switzerland

Outline

Goals:

- Estimation of inefficiency scores in electricity distribution utilities using different methods
- Study the implications of the empirical results in performance-based regulation

Contents:

- Introduction
- Empirical Analysis
- Conclusion

Relevant for regulation

Inefficiency measurement methods

Simple Indicators

Average cost; Partial productivity indicators; TFP

Operations Research

Data Envelopment Analysis; Free Disposal Hull

Econometric Approach

Cost Frontier Regression

сере

Cost Frontier Analysis

сере

CEDE

Model Specification

 $\mathbf{C} = \mathbf{C}(Y, P_K, P_E, P_L, LF, CU, AS, HGRID, DOT, DW, T)$

+

<i>C</i> :	Total costs
Y:	Output (total number of kWh delivered)
<i>PK,PL,PE</i> :	Prices of capital, labor and input power
<i>LF</i> :	Load factor
CU:	Number of customers
AS:	Size of the service area of the distribution utility
HGRID:	Indicator for high-voltage transmission network
DOT:	Indicator for auxiliary revenues (> 25%)
DW:	Indicator for forest coverage (>40%)

Problem: definition of the capital price

Functional form

$$\ln\left(\frac{C}{P_{P}}\right) = \beta_{0} + \beta_{Y} \ln Y + \beta_{AS} \ln AS + \beta_{CU} \ln CU$$
$$+ \beta_{LF} \ln LF + \beta_{K} \ln\left(\frac{P_{K}}{P_{P}}\right) + \beta_{L} \ln\left(\frac{P_{L}}{P_{P}}\right)$$
$$+ \delta_{1} HGRID + \delta_{2} DOT + \delta_{3} DW + \beta_{T} T$$

Data

- 59 Swiss electricity distribution utilities
- Period 1988-1996
- => Unbalanced panel with 380 observations
- Data sources:
 - (Unpublished) financial statistics on electric utilities (Swiss Federal Office of Energy)
 - Mail survey
 - Area statistics (Swiss Federal Office of Statistics)

Cost efficiency analysis

	OLS	RE (GLS)	RE (MLE)	FE
Minimum	1.07	1	1.07	1
Maximum	1.46	1.38	1.36	2.14
Average	1.23	1.16	1.15	1.35
Median	1.22	1.16	1.13	1.31
95 Percentile	1.41	1.32	1.30	1.66
Number of Firms	59	59	59	59

Correlation between efficiency ranks

	DOLS	RE (GLS)	RE (MLE)	FE
DOLS	1			
RE (GLS)	0.936	1		
RE (MLE)	0.838	0.895	1	
FE	0.447	0.514	0.417	1

сере

Implication for some typical companies

Company	Inefficiency Score						
	OLS	RE (GLS)	RE (ML)	FE			
Α	1.20	1.16	1.15	1.22			
В	1.08	1.00	1.09	1.41			
С	1.46	1.38	1.35	1.44			
D	1.21	1.10	1.13	1.09			
E	1.31	1.21	1.19	1.17			

•The companies are adopted based on the ranking obtained from the RE (GLS) model: A: median; B: most efficient; C: least efficient; D: 1st quartile; E: 3rd quartile .

Problems in application of efficiency indicators in regulation:

- From an econometric point of view it is not straightforward to specify which model is the best one.
- Only after a careful econometric analysis the efficiency indicators can be used in regualtion.
- We should be careful in using directly the level of inefficiency scores in regulation, for instance in a price cap regulation formula.

Conclusions

- The estimated frontier cost function can be a useful instrument for yardstick and price cap regulation.
- Advantages: Heterogeneity factors can be incorporated in setting yardstick and price cap regulation (fair benchmarking).
- The regualtor and firms should be aware that the results can be influenced by the model specification, functional form and the econometric approach.
- The use of intervals instead of point estimators for efficiency indicators could be a possible improvement.

THANK YOU FOR YOUR INTEREST

Regression Results

		OLS		Random-Effects (GLS)		Random-Effects (MLE)		Fixed-Effects	
		Coeff.	Std. Err.	Coeff.	Std. Err.	Coeff.	Std. Err.	Coeff.	Std. Err.
ln	Y	0.851	0.017	0.78	0.032	0.767	0.04	0.677	0.055
ln	CU	0.084	0.017	0.153	0.033	0.163	0.048	0.251	0.096
ln	AS	0.044	0.004	0.051	0.009	0.047	0.013	-	-
ln	LF	-0.243	0.037	-0.239	0.039	-0.23	0.023	-0.213	0.044
ln	PL	0.067	0.011	0.041	0.014	0.039	0.014	0.038	0.016
ln	РК	0.2	0.009	0.174	0.01	0.171	0.005	0.169	0.01
H	GRID	0.063	0.012	0.075	0.027	0.098	0.039	-	-
D	ОТ	0.033	0.01	0.05	0.022	0.04	0.028	-	-
D	W	0.014	0.01	0.012	0.023	0.062	0.028	-	-
Т		0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.002
C	onstant	-2.236	0.233	-0.793	0.369	-0.653	0.43	-	-

•Estimated functions are well behaved.

- •Almost all the parameter estimates are statistically highly significant and have the expected sign.
- Some coefficients across the models are similar.

сере

Implication in an example of price-cap regulation

Price cap: $P_{t+1} = P_t (1 + \Delta CPI - \Delta TFP - X + Z)$ $P_t = 19 \quad \Delta CPI = 1\% \quad \Delta TFP = 1\% \quad Z = 0$

X =Inefficiency Termof regulation=5 years

Company	Price Cap (Cents)					
(based on GLS)	OLS	RE (GLS)	RE (ML)	FE		
Median	18.24	18.38	18.43	18.17		
Most Efficient	18.71	19.00	18.66	17.45		
Least Efficient	17.27	17.54	17.68	17.33		
1st Quartile	18.19	18.61	18.52	18.65		
3rd Quartile	17.84	18.21	18.29	18.37		

Prediction errors

Out-of-sample			1-year-ahead		
OLS	RE	FE	OLS	RE	FE
7.37	7.57	11.8	5.91	3.02	3.1
25.2	27.3	39	17	10.3	10.3
17.8	20.1	31.1	13.5	6.82	7.66
0.34	0.98	1.08	-0.03	0.08	0.24
380	380	380	52	52	52
	OLS 7.37 25.2 17.8 0.34 380	Out-of-samp OLS RE 7.37 7.57 25.2 27.3 17.8 20.1 0.34 0.98 380 380	OLS RE FE 7.37 7.57 11.8 25.2 27.3 39 17.8 20.1 31.1 0.34 0.98 1.08 380 380 380	Out-of-sample I OLS RE FE OLS 7.37 7.57 11.8 5.91 25.2 27.3 39 17 17.8 20.1 31.1 13.5 0.34 0.98 1.08 -0.03 380 380 52	OLS RE FE OLS RE 7.37 7.57 11.8 5.91 3.02 25.2 27.3 39 17 10.3 17.8 20.1 31.1 13.5 6.82 0.34 0.98 1.08 -0.03 0.08 380 380 380 52 52

- Errors are given in percentage of the actual costs.

Stochastic Frontier Model with Panel Data

OLS:
$$\ln C_{it} = \ln C(y_{it}, w_{it}) + v_{it} \qquad v_{it} \sim iid(0, \sigma_v^2)$$

Deterministic :
$$\ln C_{it} = \ln C(y_{it}, w_{it}) + u_{it} \quad u_{it} \ge 0$$

Different Specifications of u_i : *half-normal, truncated,*Maximum Likelihood

No particular specification of *u_i* with Panel Data: • Random-effects model

• Fixed-effects model

Effect of outputs and output characteristics on total costs

	OLS	RE (GLS)	RE (MLE)	FE
lnY	0.851	0.78	0.767	0.677
lnCU	0.084	0.153	0.163	0.251
lnAS	0.044	0.051	0.047	-
lnLF	-0.243	-0.239	-0.23	-0.213

• Estimated functions are well behaved.

• All the parameter estimates are statistically significant and have expected signs.

• Some coefficients across the models are similar.

A possible improvement in the practical application of cost frontier analysis:

