Club Goods and a ‘Tragedy of the Commons’
Renewable energy: learning and curtailment

David Newbery*
EPRG, University of Cambridge
IAEE Webinar
24th March 2021
Outline

• EU Clean Energy Package is a Club Good
 – Club membership finances public goods
 • carbon prices charge for global climate damage
 • renewables support finances learning-by-doing spill-overs
 – National Energy and Climate Plans
 => high wind/PV variable penetration by 2025-30

• Tragedy of the commons
 – Common resources risk over-exploitation
 – Wind curtailment forces price to near zero
 – Marginal curtailment of an extra 1 MW wind = 3-4x average
 – Last entrant enjoys average not marginal curtailment

• Island of Ireland at forefront of high wind penetration
 => model SEM to quantify these failures
Address external costs (CO₂) and learning benefits

- Benefit depends on cumulative shipping not output
- Solar PV cost fall 20% for each doubling of cumulative shipments
• EU ETS prices CO$_2$
 – **Stiglitz Report**: Paris target-consistent price at least **US$40–80/tCO$_2$** by 2020 and **US$50–100/tCO$_2$** by 2030
 – March 2021 EUA price **€40/t CO$_2$ = $48/t CO$_2$**

• **Renewables targets** => implicit subsidy for **learning externalities**
 – Installation => learning cost reduction => *no subsidy to output*
 – E.g. for on-shore wind by mid 2020’s **global** learning externality could be **10%** of capital cost

⇒ **MISSION INNOVATION**
 Global learning subsidies
Clean Energy Package

• Island of Ireland submits *National Energy and Climate Plans (NCEP)*
• Single Electricity Market (SEM) target: 55% wind by 2026
 – Almost all on-shore, little PV, Celtic Link not due before 2026
• GB, FR, BE, NL, DE, ES published NCEPs
 – Can forecast implied wind, solar, nuclear (surplus=>zero price)
 ⇒ if total area in surplus; SEM cannot export surplus wind
 ⇒ Reduces value of extra interconnectors
SEM wind *appears* uncorrelated with GB wind – interconnection good?
But GB follows SEM wind with 4-hr lag => need temporal model
Ability for SEM to export constrained by surpluses abroad
SEM System constraints

• Five units have to be running for stability
 – Minimum stable generation (MSG) = 795 MW
• N-1 constraint – spinning reserves = largest single infeed
 – Satisfied by MSG
• Simultaneous Non-Synchronous Penetration, SNSP < 75% (2020)
 – Wind, PV, DC interconnectors are non-synchronous: cannot provide inertia
 – Inertia reduces the rate of change of frequency (ROCOF): time to lower frequency limit
 – Breaching ROCOF limits risks disconnecting more generation
 – SEM is in process of raising ROCOF to 1 Herz/sec (GB currently at 0.25Hz/sec)

=> Consider ambitious target of 85% SNSP
• Cannot export surplus if neighbours saturated
 – Consider storage:
 • PSP can take 292 MW for 8 hrs, BES 500 MW for 1 hr
 • EVs in 2026 670 MW up to 1 GWh if enabled
 • Immersion heaters – conceivably up to 3.8 GW up to 1.9 GWh if enabled

Newbery
Frequency evolution in GB in Aug 2019 blackout

- Circuit fault Eaton Socon-Wymondley [16:52:33.490]
- Fault cleared [16:52:33.564]
- Hornsea loss of 737MW [16:52:33.835]
- Little Barford ST trip 244MW [16:52:34]
- Increase in transformer loadings (Loss Of Mains) ~500MW [16:52:34]
- Frequency response recovers frequency to 49.2 Hz [16:53:18]
- Little Barford GT1a trip 210MW [16:53:31]
- Frequency falls arrested at 49.1Hz [16:52:58]
- Embedded gen. loss 200 MW @49Hz
- Little Barford GT1b trip 187MW [16:53:58]
- Frequency breaches 48.8Hz triggering LFDD [16:53:49.398]
- ESO National Control instruct 1,240 MW of actions to restore frequency to operational limits and restore frequency response and reserve services.
SNSP needs fossil generation

Graph 11 - DAM Executed Gas Volume against SNSP

Source: Market Monitoring Unit, SEM
Modelling SEM in 2026

- Scale 2018 hourly demand by 1.25 for 2026 45.5 TWh
- 55% wind is 26.2 TWh
- 2018 is an average wind year, 28.4% capacity factor
 - Scale up 2018 hourly wind by 2.18 to meet target

Source: Eirgrid (2019)
Steps to find curtailment

1. Can SEM export? (are neighbours in surplus?)
2. If not, SNSP 85% of demand limits wind for consumption
 – If still surplus, put into storage until full
3. Remainder is spilled wind to be curtailed
4. Rank curtailed MWh in descending order to zero
5. Total = curtailment
6. Increase capacity by 100 MW, re-estimate curtailment

=> *Marginal curtailment* = per MW extra wind
= 3-4 times average curtailment
Curtailment and SNSP

Illustrative duration curves for SEM 2026

Area under curve is total curtailment
Linearizing allows simple algebraic curtailment model
Impacts of SNSP on curtailment

Increasing SNSP has large impact

<table>
<thead>
<tr>
<th>SNSP</th>
<th>Curtail GWh</th>
<th>percent</th>
<th>Delta GWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%</td>
<td>3,388</td>
<td>13.3%</td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td>2,642</td>
<td>10.4%</td>
<td>746</td>
</tr>
<tr>
<td>85%</td>
<td>2,050</td>
<td>8.1%</td>
<td>592</td>
</tr>
<tr>
<td>90%</td>
<td>1,826</td>
<td>7.2%</td>
<td>224</td>
</tr>
</tbody>
</table>
1. Cost of fossil capacity to meet reliability standard, $C_f(W)$
2. Differentiate w.r.t $W = \text{cost saving}$ from 1 MW extra wind.
3. Social value of 1 MW wind, S_W, is

$$S_W = -\frac{\partial C_f}{\partial W} - (r_W + v_W (H - h^*) \phi_e).$$

where the () is the annual fixed cost, r_W, of 1 MW wind, v_W is the unit variable cost, ϕ_e is the effective capacity factor over the uncurtailed hours, $H-h^*$.
4. Find the market surplus (revenue less cost) M_W
5. Find corrective charge

$$\tau = M_W - S_W.$$
Sources of market failure

• Renewables are de-rated to estimate their contribution to reliability – e.g. wind in SEM at 10%
• But wind (& PV) best treated as one very large turbine
 – Highly correlated output, not independent generators
=> care needed in setting de-rating factor
• Market rewards average not worst case scarcity
=> tragedy of commons: competitive market prices set by average curtailment but value depends on margin
The corrective charge has two components:

\[\tau(W) = r_P \left(E\lambda \phi_\lambda / L - \delta_W \right) + (v_p - v_W) E\lambda \phi_\lambda + v_F \beta \phi_{H-h^*} W \frac{\partial h^*}{\partial W} > 0 \]

- **excess capacity credit**
- **marginal curtailment**

Choose \(\delta_W \) to make zero

\(r_P \) = fixed cost of peaker, \(L \) is reliability target (8hrs), \(\lambda \) actual stress hrs

\(E\lambda \phi_\lambda \) = Expected wind output in these hours, \(\delta_W \) = derating factor,

\((v_p - v_W) E\lambda \phi_\lambda \) = Operating costs then (tiny)

\(\beta = (1 - SNSP) \) - fraction met by synchronous plant for frequency stability,

\(\phi_{H-h^*} \) = wind capacity factor at the curtailment margin,

\(v_p \) = baseload fossil variable cost

\(\frac{\partial h^*}{\partial W} \) = marginal curtailment, hrs/MW; \(W \) = wind capacity,
Learning externality: capacity subsidy to fixed cost of wind, central estimate is **10%** of fixed cost in 2026 (7%-16%)
Set de-rating δ_w so first component = zero

Curtailment cost (SNSP = 75%, no Celtic Link) is **20%**
Ambitious scenario (85% SNSP, Celtic Link, 3 x storage): cost is **10%**

Conclusion –offset each other in ambitious scenario if capacity de-rating is corrected
Policy options

- Decentralise => subsidize wind for learning externalities but impose corrective entry charge in annual grid charge
- Decentralise but ignore both as they are modest and offsetting
- Or set target (e.g. 55%) and auction for capacity subsidy
 - Additional payment for first 30,000 full operating hours (MWh/MW) – see Newbery (2021)
Conclusions

• High wind penetration on island leads to curtailment (8-13%) but *marginal* curtailment 4 times as high
• Interconnection helps, raising SNSP more so, storage less
• De-rating of wind understates average wind revenues in stress hours (based on worst case events), so market over-rewards wind capacity, needs correction
• Marginal curtailment determines social value but revenue depends on average curtailment, so need **corrective entry cost** (annual fixed charge) to induce efficient entry
 – But counterbalanced by *learning externality*
• *Or* auction for wind €X/MWh for 30,000 full hrs (MWh/MW)
References

Spare slides
Is battery storage the answer to excess wind?

Impact of increasing BES, (SNSP=85%), GWh/yr

<table>
<thead>
<tr>
<th>Extra MW BES</th>
<th>Curtail GWh/yr</th>
<th>Delta GWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,042</td>
<td>8.0%</td>
</tr>
<tr>
<td>100</td>
<td>2,023</td>
<td>8.0%</td>
</tr>
<tr>
<td>200</td>
<td>2,006</td>
<td>7.9%</td>
</tr>
</tbody>
</table>

Effect of halving storage capacity (SNSP=85%) GWh/yr

<table>
<thead>
<tr>
<th>SNSP</th>
<th>GWh/yr</th>
<th>percent</th>
<th>delta</th>
<th>rel to full storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%</td>
<td>3,536</td>
<td>13.9%</td>
<td></td>
<td>148</td>
</tr>
<tr>
<td>80%</td>
<td>2,784</td>
<td>10.9%</td>
<td>753</td>
<td>141</td>
</tr>
<tr>
<td>85%</td>
<td>2,187</td>
<td>8.6%</td>
<td>597</td>
<td>137</td>
</tr>
<tr>
<td>90%</td>
<td>1,961</td>
<td>7.7%</td>
<td>225</td>
<td>136</td>
</tr>
</tbody>
</table>

Less than 3% of potential storage capacity
Interconnector impacts

Impact of 700 MW Celtic Link at varying SNSP on curtailment

<table>
<thead>
<tr>
<th>SNSP</th>
<th>curtailed GWh/yr</th>
<th>percent</th>
<th>saved by Celtic Link, GWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%</td>
<td>3,153.7</td>
<td>12.4%</td>
<td>235</td>
</tr>
<tr>
<td>80%</td>
<td>2,392.3</td>
<td>9.4%</td>
<td>250</td>
</tr>
<tr>
<td>85%</td>
<td>1,775.1</td>
<td>7.0%</td>
<td>275</td>
</tr>
<tr>
<td>90%</td>
<td>1,515.4</td>
<td>6.0%</td>
<td>310</td>
</tr>
</tbody>
</table>

Comparing value of 900 MW current interconnection for 2026

<table>
<thead>
<tr>
<th>SNSP</th>
<th>curtailed GWh/yr</th>
<th>percent</th>
<th>saved by current IC GWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%</td>
<td>4,085.0</td>
<td>16.1%</td>
<td>697</td>
</tr>
<tr>
<td>80%</td>
<td>3,393.3</td>
<td>13.3%</td>
<td>751</td>
</tr>
<tr>
<td>85%</td>
<td>2,907.2</td>
<td>11.4%</td>
<td>858</td>
</tr>
<tr>
<td>90%</td>
<td>2,752.8</td>
<td>10.8%</td>
<td>927</td>
</tr>
</tbody>
</table>
Let F be fossil capacity, W wind capacity, $D(h)$ is demand duration schedule, L is Loss of Load Expectation, δ de-rating factor, then

$$F \delta_F = D(L) - W \delta_W,$$

so

$$\frac{\partial F}{\partial W} = -\frac{\delta_W}{\delta_F}.$$

$k(h,W)$ is curtailment function, h^* hours curtailed when $k(h^*,W) = 0$,

$$k = A(1 - h(\theta)/h_r^*) + \alpha(\theta W - W_r)$$

Average curtailment with capacity factor ϕ and H hrs/yr

$$\frac{\int_0^{h^*} k(W, h)\,dh}{W \phi H}$$

Newbery
Calibrate algebraic model

Calibrating to SNS = 75%

\[\int_0^{h^*} k(W, h) dh = \frac{1}{2} Ah_r^* = 3,388 \text{ GWh}, \]

Marginal curtailment is

\[\int_0^{h_r^*} \frac{\partial k}{\partial W} dh = \int_0^{h_r^*} \alpha dh = \alpha h_r^* = 1,213 \text{ MWh/MW}. \]

Ratio to average is

or roughly 4:1

(consistent with simulation)
Duration curves: each ranked separately