

NATIONAL OPEN ACCESS SCIENTIFIC CENTRE FOR FUTURE ENERGY TECHNOLOGIES

Technology Based Modelling of Economy Decarbonization

Research is founded by the Scientific Council of Lithuania. Project No S-MIP-19-36

PhD Candidate Mindaugas Česnavičius

Laboratory of Energy Systems Research

NATIONAL OPEN ACCESS SCIENTIFIC CENTRE FOR FUTURE ENERGY TECHNOLOGIES

External Modeling Factors Evaluation Using Statistical Forecasting Methods: Electricity Price Case

PhD Candidate Mindaugas Česnavičius

Laboratory of Energy Systems Research

External Modeling Factors

- Modelling concentrates on one particular energy system;
- External connected systems still exist and does affect the modeled one;
- Lack of information about neighboring systems prevent from building another model;
- How to reliably evaluate energy and reserve prices in neighboring systems without building another model?

A need for reliable external factors evaluation model for surrounding systems

Electricity Price

Statistical Forecasting

Statistical forecasting provides tools for future values prediction based on the past

Forecasting Methods

Univariate Models

- Extrapolation;
- Moving average;
- Linear regression;
- Exponential smoothening;
- AR;
- ARMA;
- ARIMA;
- SARIMA;
- · ...

Prediction is based only on the dynamics of past values

Multivariate Models

- Multivariable regression;
- ARIMAX;
- SARIMAX
- VAR;
- VARMA;
- · ...

Prediction is based on the dynamics of past values and additional external variables

Methods predict future values based on the past values and relation with other factors

Conceptual Model

Forecasting

Multivariate model is divided until univariate forecasting is the most suitable

SARIMA Model

- Every time series can be divided into: trend, seasonal and random components;
- Trend component shows long-term direction of the time series;
- Seasonal components shows pattern which is time series repeat over same periods of time;
- Random component represents unpredicted time series movement;
- SARIMA model breaks down time series into components and forecasts them separately.

SARIMA model evaluates time series trend, seasonal and random components

Forecasting Methodology

- Reliable data source;
- Convenient format.
- Check for stationarity;
- Avoid structural breaks.
- Use train dataset to build the model;
- Use test dataset to check the model.
- Build different parameters models;
- Check the models approximation.
- Try to forecast the test dataset;
- Check the models error values.
- Select the best model;
- Use the model to forecast.

Various statistical tests and criteria helps to ensure created model reliability

Univariate Forecasting Example

- Data are gathered from Nordic electricity market operator NordPool;
- Dataset contains 90 points;
- Price points are collected from 2012 July to 2019 December;
- Electricity price varies from 29 €/MWh to 64 €/MWh;
- Goal to forecast electricity price for 2020.

Lithuania electricity price time series data are selected for example

Univariate Forecasting Result

	Models				
	AR (1)	ARIMA (1,1,0)	ARIMA (1,1,1)	SARIMA (1,1,1)	Weighted
					SARIMA (1,1,1)
	Approximation Criteria				
AIC	492.64	491.27	488.91	429.75	-
BIC	499.71	495.95	495.94	440.62	-
	Accuracy Criteria				
RMSE	4.13	8.95	4.22	11.21	5.64
MAE	3.58	8.20	3.65	10.44	5.19
MPE	-1.97	-17.91	-2.67	-22.74	-11.13
MAPE	7.94	18,68	8.16	23.27	11.65

Final model have ~12% electricity price forecasting error

NATIONAL OPEN ACCESS SCIENTIFIC CENTRE FOR FUTURE ENERGY TECHNOLOGIES

External Modeling Factors Evaluation Using Statistical Forecasting Methods: Electricity Price Case

PhD Candidate Mindaugas Česnavičius

Laboratory of Energy Systems Research