

Locational (In)Efficiency of Renewable Energy Feed-in into the Electricity Grid: A Spatial Regression Analysis

IAEE Webinar

Tim Höfer and Reinhard Madlener

June 24, 2020

Background and motivation

Challenges

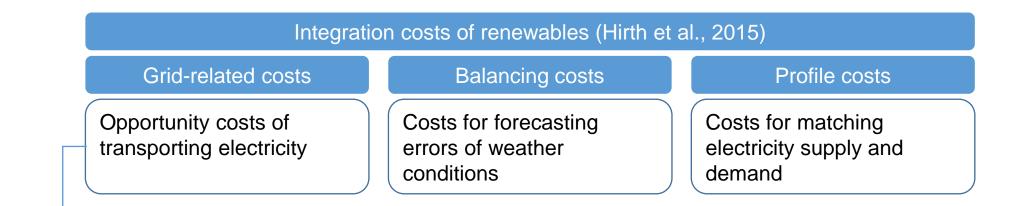
- Regional imbalance between electricity generation and consumption
- Variable electricity generation by renewables
- Electricity infeed into the distribution grid
- Reinforcement of the electricity grid is lagging behind

Overstress of the electricity infrastructure

Curtailment of power plants

Q1

Compensation for the restrained electricity


Passing on the costs to customers in the region concerned

Which drivers induce the occurrence of RES curtailment?

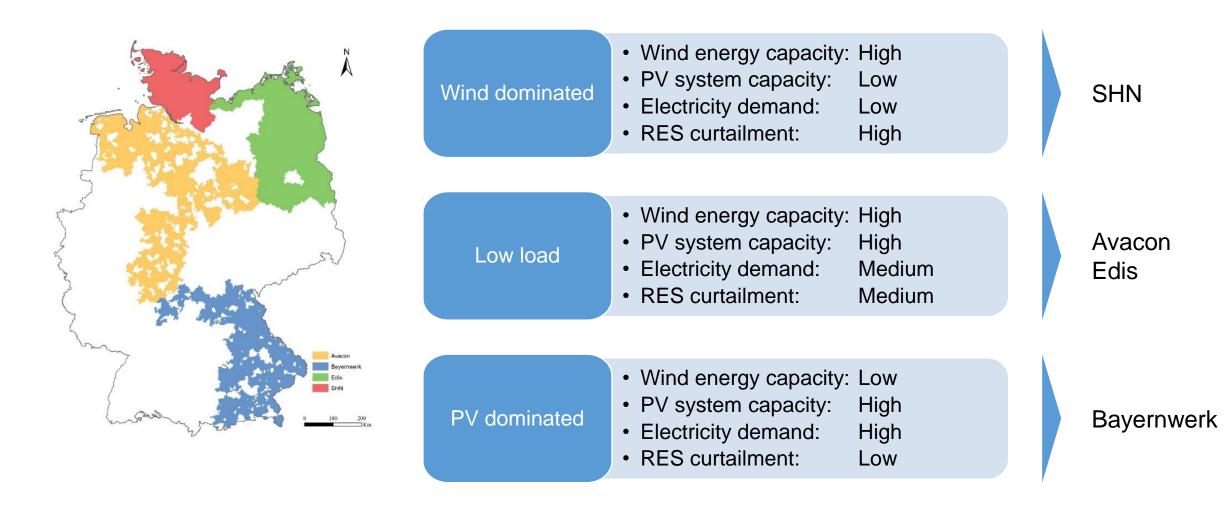
Q2 What are the regional curtailment costs of different renewables?

RES curtailmen

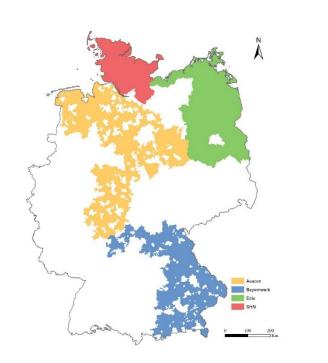
Related literature:

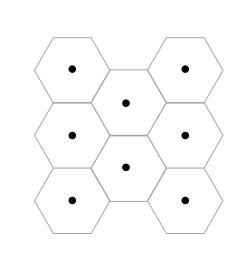
- Quantifies the integration costs of renewables
- Qualitatively investigated the reasons for the occurrence of RES curtailment

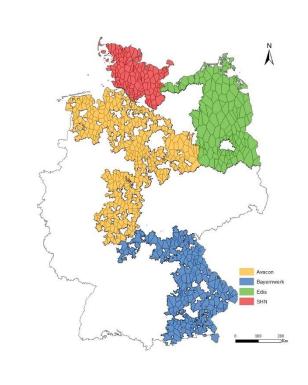
Merits of the paper:


- Quantification of RES curtailment costs in a high spatial resolution
- Explanation of the correlation between renewables and RES curtailment
- Explanation of the impact of different renewables on RES curtailment costs

Hirth, L., F. Ueckerdt, and O. Edenhofer (2015). Integration Costs Revisited – An Economic Framework for Wind and Solar Variability. Renewable Energy 74, 925–939


Description of the study region




Scope of the analysis

- 4 DSO regions
- 3 years (2015 2017)

- Voronoi tessellation
- High-to-medium voltage transformer stations

- 1,111 DSO subregions
- 3 years (2015 2017)
- > 3,333 observations

DSO = Distribution System Operator

Step 1: Selection equation

- Probit model
- Corrects bias from non-randomly selected samples
- All subregion considered

$$y_{1t}^* = \alpha_0 + \alpha_1 x_{1t} + \epsilon_1$$

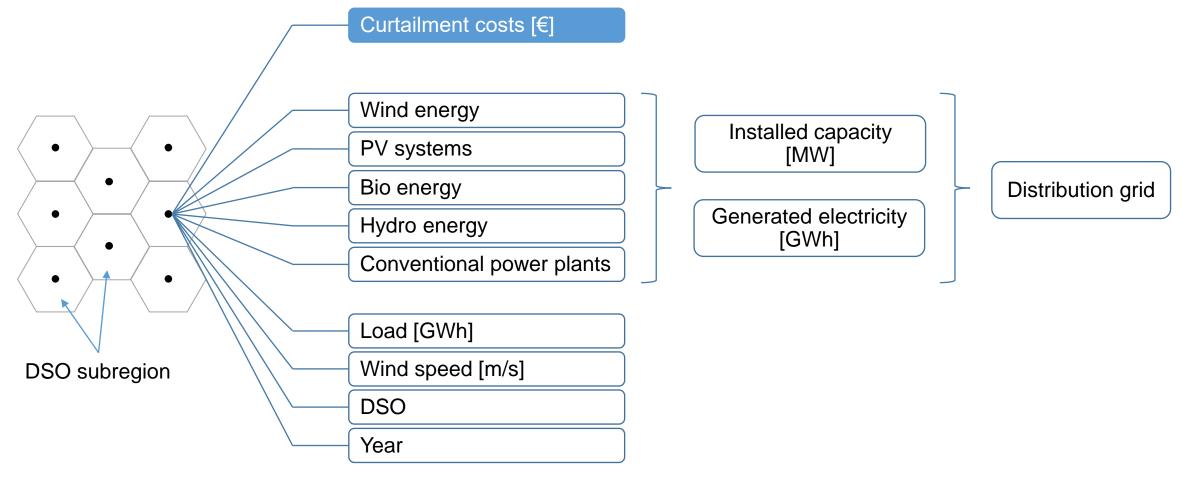
$$y_{1t} = \begin{cases} 1, & y_{1t}^* > 0\\ 0, & y_{1t}^* \le 0 \end{cases}$$

Impact of renewables on the probability of occurrence of RES curtailment

Step 2: Output equation

- Spatial econometric model
- Captures cross-sectional dependence
- Only subregion with RES curtailment costs between 2015 – 2017

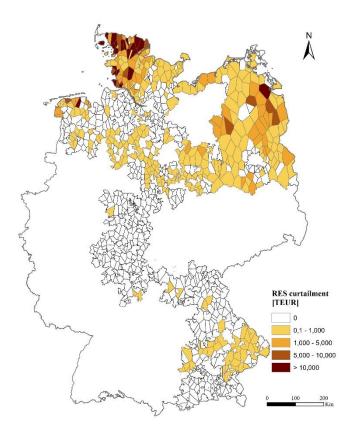
$$y_{2it}^{*} = \beta_{i} + \beta x_{2it} + \theta^{T} \underbrace{\sum_{j=1}^{m} w_{ij} x_{2jt}}_{e_{it}} + \underbrace{e_{it}}_{e_{it}}$$


$$e_{it} = \lambda_{ij}^{T} f_{t} + \varepsilon_{it}$$
SLX
CCE

Impact of renewables on RES curtailment costs

SLX = Spatial lag of X, CCE = Correlated common effects

Regression variables

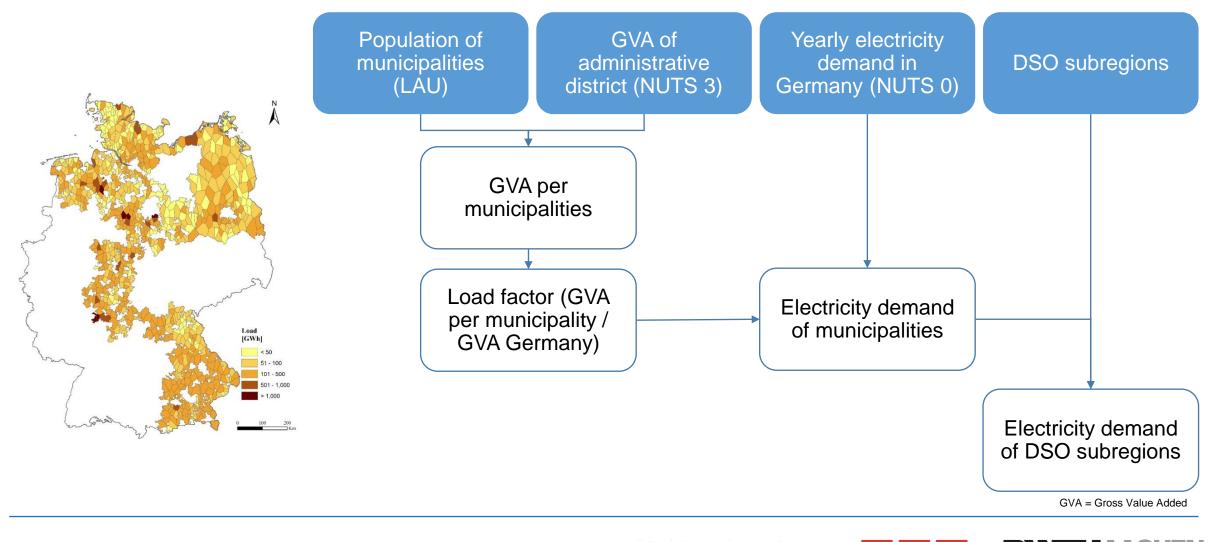

PV = Photovoltaic (including rooftop PV)

Calculating the dependent variable

2

3

Calculating the potential hourly electricity output of renewables during the curtailment measures


Computing the reduced power output of renewables stemming from curtailment measure

Determining the RES curtailment costs in the DSO subregion

RES = Renewable Energy Source, DSO = Distribution System Operator

Calculation of the load in the DSO subregions

FCN | Future Energy Consumer Needs and Behavior

E.ON Energy Research Center

		nstalled ca	apacity [MW]		Ge	enerated ele	ectricity [GW	h]
	Selection	equation	Output e	quation	Selection	equation	Output e	quation
Wind	- 0.003***	(0.004)	0.007***	(0.002)	0.0007***	(0.0002)	0.002***	(0.001)
PV	- 0.003***	(0.002)	0.004	(0.005)	0.005***	(0.002)	0.002	(0.007)
Зіо	- 0.003**	(0.005)	- 0.003	(0.009)	0.0007***	(0.0008)	- 0.001	(0.002)
Hydro	0.004	(0.032)	- 0.035	(1.340)	0.002	(0.008)	- 0.229	(0.367)
Conventional	0.0001	(0.0003)	- 0.001	(0.001)	0.00	(0.0002)	- 0.001	(0.001)
Spatial Lag Wind			- 0.0002	(0.002)			0.001	(0.001)
Spatial Lag PV			0.003	(0.008)			0.010	(0.010)
Spatial Lag Bio			0.007	(0.009)			0.002	(0.002)
Spatial Lag Hydro			- 1.351	(2.007)			- 0.386	(0.551)
Spatial Lag Conventional			- 0.001	(0.002)			- 0.001	(0.001)
_oad [GWh]	- 0.0004***	(0.0003)			- 0.0004***	(0.0003)		
Adjusted) R ²	0.309		0.469		0.273		0.476	
Sensitivity	0.897				0.877			
Specificity	0.605				0.596			

Impact on likelihood of occurrence of RES curtailment per MW

•	Wind:	+	0.3%
•	PV:	+	0.3%
•	Bio:	+	0.3%
•	Load:	-	0.04% [GWh]

	Installed capacity [MW]				Ge	enerated ele	ectricity [GW	h]	-
	Selection	equation	Output e	equation	Selection	equation	Output e	equation	
Wind	0.003***	(0.004)	0.007***	(0.002)	- 0.0007***	(0.0002)	0.002***	(0.001)	
PV	0.003***	(0.002)	0.004	(0.005)	- 0.005***	(0.002)	0.002	(0.007)	
Bio	0.003**	(0.005)	- 0.003	(0.009)	- 0.0007***	(0.0008)	- 0.001	(0.002)	
Hydro	0.004	(0.032)	- 0.035	(1.340)	0.002	(0.008)	- 0.229	(0.367)	
Conventional	0.0001	(0.0003)	- 0.001	(0.001)	0.00	(0.0002)	- 0.001	(0.001)	Import on likelihood o
Spatial Lag Wind			- 0.0002	(0.002)			0.001	(0.001)	Impact on likelihood o occurrence of RES
Spatial Lag PV			0.003	(0.008)			0.010	(0.010)	curtailment per GWh
Spatial Lag Bio			0.007	(0.009)			0.002	(0.002)	
Spatial Lag Hydro			- 1.351	(2.007)			- 0.386	(0.551)	• Wind: + 0.07%
Spatial Lag Conventional			- 0.001	(0.002)			- 0.001	(0.001)	 PV: + 0.05%
Load [GWh]	- 0.0004***	(0.0003)			- 0.0004***	(0.0003)			• Bio: + 0.07%
(Adjusted) R ²	0.309		0.469		0.273		0.476		• Load: - 0.04%
Sensitivity	0.897				0.877				
Specificity	0.605				0.596				

		Installed ca	pacity [MW]		Ge	enerated ele	ectricity [GW	h]	-
	Selection	equation	Output e	equation	Selection	equation	Output e	equation	
Wind	0.003***	(0.004)	- 0.007***	(0.002)	0.0007***	(0.0002)	0.002***	(0.001)	
v	0.003***	(0.002)	0.004	(0.005)	0.005***	(0.002)	0.002	(0.007)	
Bio	0.003**	(0.005)	- 0.003	(0.009)	0.0007***	(0.0008)	- 0.001	(0.002)	
Hydro	0.004	(0.032)	- 0.035	(1.340)	0.002	(0.008)	- 0.229	(0.367)	
Conventional	0.0001	(0.0003)	- 0.001	(0.001)	0.00	(0.0002)	- 0.001	(0.001)	
Spatial Lag Wind			- 0.0002	(0.002)			0.001	(0.001)	Impact on RES curtailment costs pe
Spatial Lag PV			0.003	(0.008)			0.010	(0.010)	MW
Spatial Lag Bio			0.007	(0.009)			0.002	(0.002)	
Spatial Lag Hydro			- 1.351	(2.007)			- 0.386	(0.551)	• Wind: + 0.7%
Spatial Lag Conventional			- 0.001	(0.002)			- 0.001	(0.001)	Vinu. + 0.770
Load [GWh]	- 0.0004***	(0.0003)			- 0.0004***	(0.0003)			
(Adjusted) R ²	0.309		0.469		0.273		0.476		
Sensitivity	0.897				0.877				
Specificity	0.605				0.596				

	Installed capacity [Ge	enerated ele	ectricity [GW	h]	
	Selection	equation	Output e	equation	Selection	equation	Output e	equation	
Wind	0.003***	(0.004)	0.007***	(0.002)	0.0007***	(0.0002)	- 0.002***	(0.001)	
PV	0.003***	(0.002)	0.004	(0.005)	0.005***	(0.002)	0.002	(0.007)	
Bio	0.003**	(0.005)	- 0.003	(0.009)	0.0007***	(0.0008)	- 0.001	(0.002)	
Hydro	0.004	(0.032)	- 0.035	(1.340)	0.002	(0.008)	- 0.229	(0.367)	
Conventional	0.0001	(0.0003)	- 0.001	(0.001)	0.00	(0.0002)	- 0.001	(0.001)	Impact on RES
Spatial Lag Wind			- 0.0002	(0.002)			0.001	(0.001)	Impact on RES curtailment costs
Spatial Lag PV			0.003	(0.008)			0.010	(0.010)	GWh
Spatial Lag Bio			0.007	(0.009)			0.002	(0.002)	
Spatial Lag Hydro			- 1.351	(2.007)			- 0.386	(0.551)	• Wind: + 0
Spatial Lag Conventional			- 0.001	(0.002)			- 0.001	(0.001)	Vind. 10
Load [GWh]	- 0.0004***	(0.0003)			- 0.0004***	(0.0003)			
(Adjusted) R ²	0.309		0.469		0.273		0.476		
Sensitivity	0.897				0.877				
Specificity	0.605				0.596				

Juft@ 24, 2020 13 Tim Höfer and Reinhard Madlener

		Ge	nerated ele	ctricity [GW	h]			
	Selection	equation	Output e	quation	Selection	equation	Output e	quation
Wind	0.003***	(0.004)	- 0.007***	(0.002)	0.0007***	(0.0002)	- 0.002***	(0.001)
PV	0.003***	(0.002)	0.004	(0.005)	0.005***	(0.002)	0.002	(0.007)
Bio	0.003**	(0.005)	- 0.003	(0.009)	0.0007***	(0.0008)	- 0.001	(0.002)
Hydro	0.004	(0.032)	- 0.035	(1.340)	0.002	(0.008)	- 0.229	(0.367)
Conventional	0.0001	(0.0003)	- 0.001	(0.001)	0.00	(0.0002)	- 0.001	(0.001)
Spatial Lag Wind			- 0.0002	(0.002)			0.001	(0.001)
Spatial Lag PV			0.003	(0.008)			0.010	(0.010)
Spatial Lag Bio			0.007	(0.009)			0.002	(0.002)
Spatial Lag Hydro			- 1.351	(2.007)			- 0.386	(0.551)
Spatial Lag Conventional			- 0.001	(0.002)			- 0.001	(0.001)
Load [GWh]	- 0.0004***	(0.0003)			- 0.0004***	(0.0003)		
(Adjusted) R ²	0.309		0.469		0.273		0.476	
Sensitivity	0.897				0.877			
Specificity	0.605				0.596			

* Most affected subregions (4th quartile)

0,1 - 1,000

Wind: 28,300 €/MW/a*
Wind: 8.1 €/MWh*

Jufter 24, 2020 14 Tim Höfer and Reinhard Madlener

Procedure

- Investigating the impacts of implementing renewables into an inflexible energy system
- Analyzing the regionally varying costs of curtailing renewables to stabilize the electricity infrastructure

Results

- Most DSO subregions do not experience RES curtailment to a large extent
- Especially wind energy induces high RES curtailment costs in northern and eastern Germany

Recommendations

- Setting regionally varying price signals for renewables
- Setting incentives for flexibility options

RES = Renewable Energy Source, DSO = Distribution System Operator

Thank you for your attention

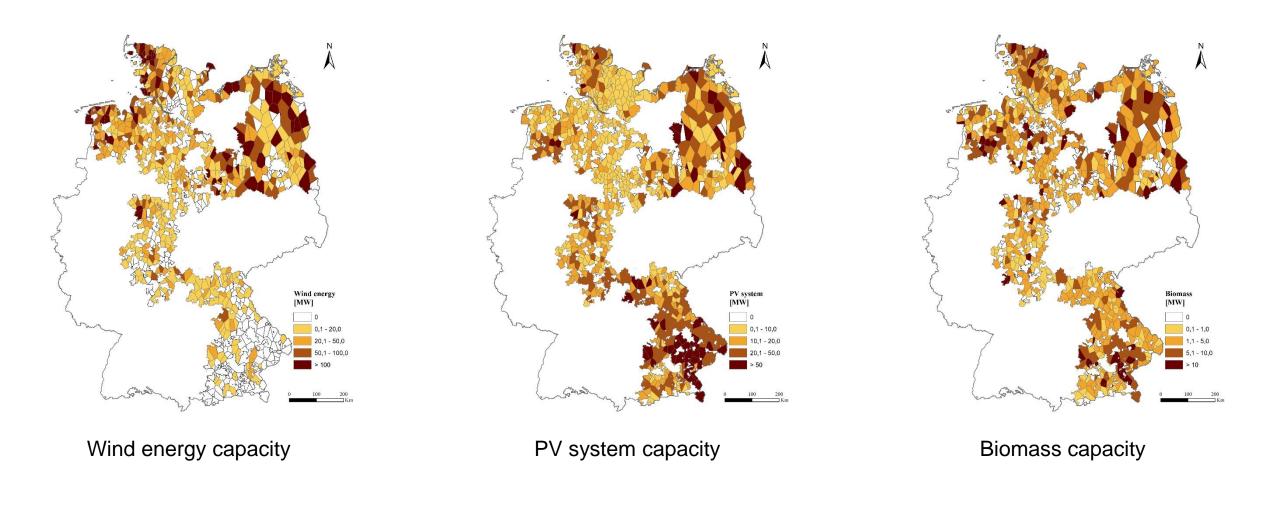
Contact details:

Institute for Future Energy Consumer Needs and Behavior (FCN) E.ON Energy Research Center Mathieustraße 10 52074 Aachen Germany

Tim Höfer

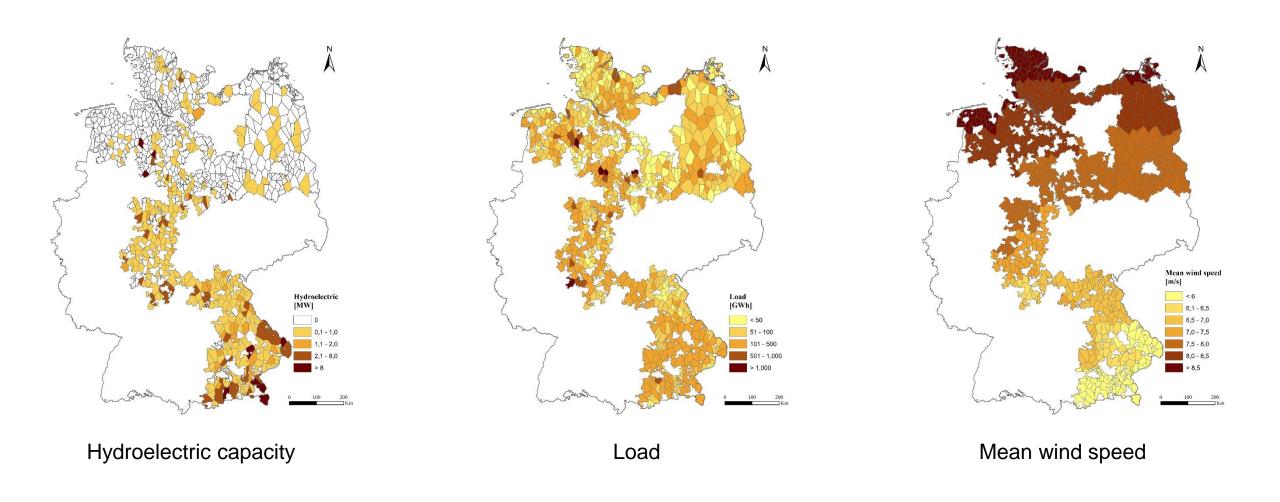
THoefer@eonerc.rwth-aachen.de T +49 241 80 49837, 49820 http://www.eonerc.rwth-aachen.de/FCN

Prof. Dr. Reinhard Madlener

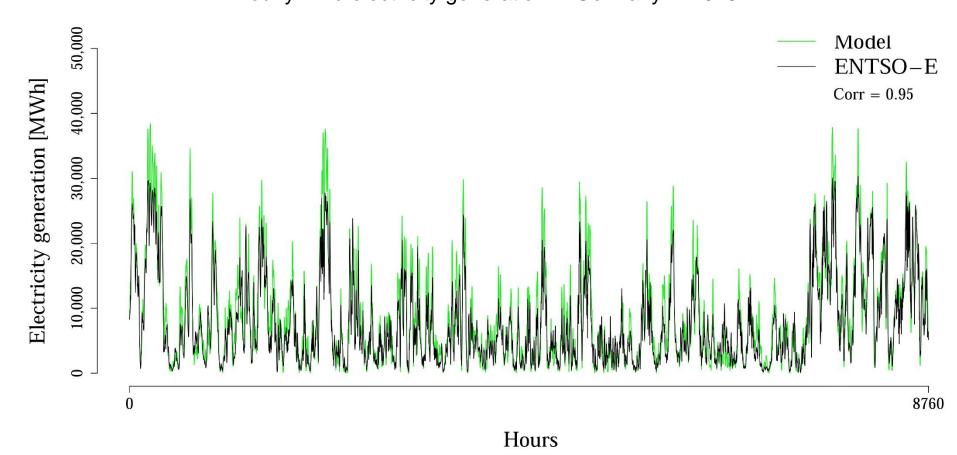

RMadlener@eonerc.rwth-aachen.de T +49 241 80 49820 Quantifying the effect of different renewable energy technologies on regional RES curtailment

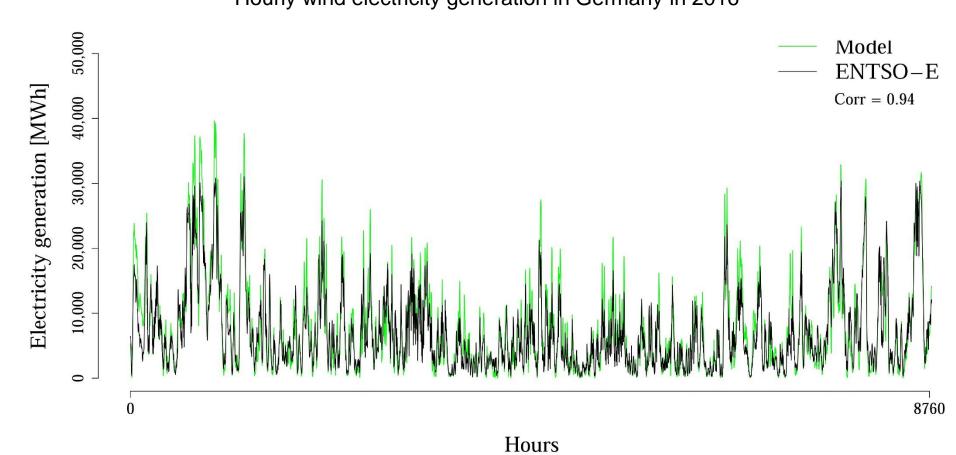
1	Elucidate why RES curtailment occurs only in some regions of Germany and not in others
2	Analyze the correlation of installed capacity and generated electricity of renewables and RES curtailment costs.
3	Calculate the regionally disaggregated amount and costs of RES curtailment in a higher spatial resolution than available in official publications.
4	Give policy recommendations based on the results

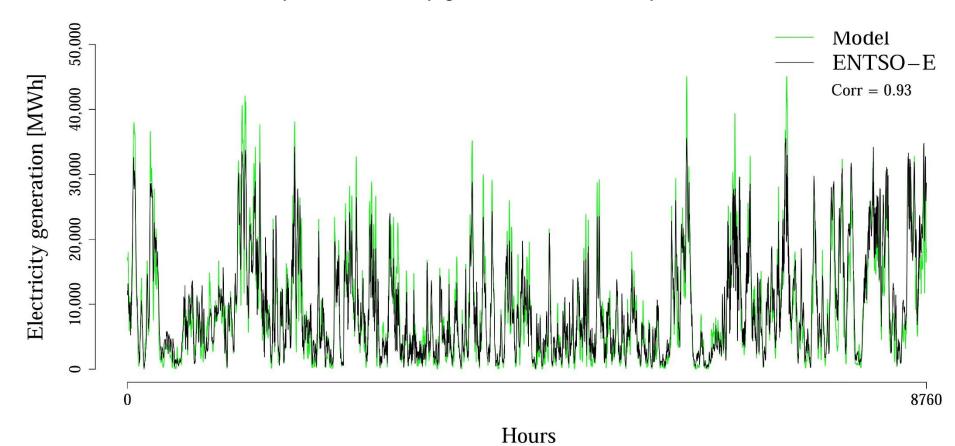
RES = Renewable Energy Source

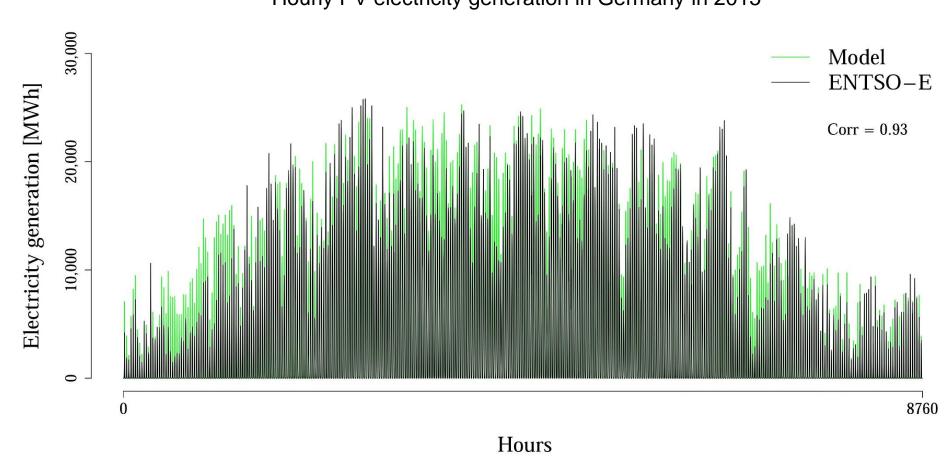


Explanatory variables

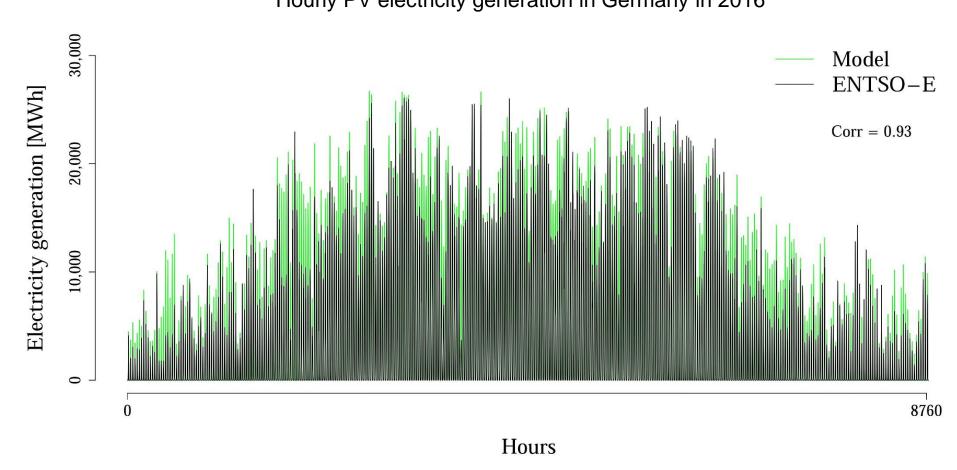

Explanatory variables


Variable	Unit	Year	Mean	Std.dev.	Min	Max	Total
RES curtailment cost	[€]	2015-2017	286,737	1,385,723	0	23,722,656	763,868,462
Wind energy	[MW]	2017	31.4	53.0	0	625	27,887
PV systems	[MW]	2017	17.0	20.4	0	216	15,105
Bio energy	[MW]	2017	3.5	6.4	0	140	3,118
Hydro energy	[MW]	2017	0.4	1.4	0	16	389
Conv. peak-load	[MW]	2017	17.0	99.5	0	1,770	15,101
Load	[GWh]	2017	146.9	327.3	5.8	7,441	130,480
Wind speed	$[W/m^2]$	2015-2017	7.7	0.9	3.4	9.6	
Wind energy	[GWh]	2017	67.2	159.8	0	1,619	59,715
PV systems	[GWh]	2017	14.0	17.0	0	191	12,379
Bio energy	[GWh]	2017	18.6	34.8	0	758	16,747
Hydro energy	[GWh]	2017	1.6	5.1	0	57	1,419
Conv. peak-load	[GWh]	2017	32.7	195.9	0	3,670	29,067

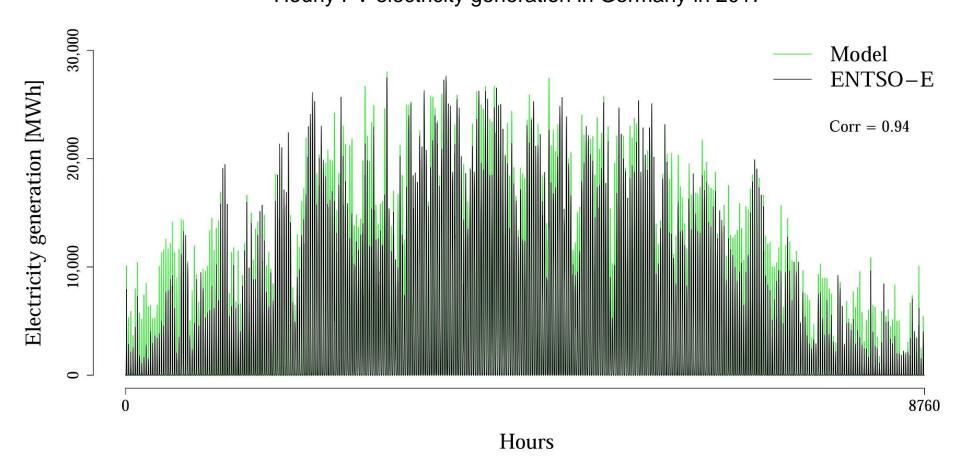

Hourly wind electricity generation in Germany in 2015


Hourly wind electricity generation in Germany in 2016

Hourly wind electricity generation in Germany in 2017



Hourly PV electricity generation in Germany in 2015



Hourly PV electricity generation in Germany in 2016

Hourly PV electricity generation in Germany in 2017

DSO^1	Federal States $(FS)^2$	Area covered [%] 3	Year	DSO costs $[\in]^4$	FS costs $[\in]^5$	Share $[\%]^6$	
Avacon		59.7^{4}	2015	6,541,760	57,908,856		11.3
	Lower Saxony, Saxony-Anhalt, Hesse		2016	5,718,869	31,223,962		18.3
	Saxony-Annan, nesse		2017	37,465,927	180,712,239		20.7
BW	Bavaria	57.8	2015	41,105	333,345		12.3
			2016	58,891	292,782		20.1
			2017	232,192	585,290		39.7
Edis	Brandenburg,	71.7	2015	45,574,389	96,229,679		47.4
	Mecklenburg-Western		2016	26,910,325	63,901,645		42.1
	Pomerania		2017	26,910,325	$62,\!274,\!651$		43.2
SHN	Schleswig-Holstein	99.4^{6}	2015	265,360,723	312,942,279		84.8
			2016	126,665,577	273,012,271		46.4
			2017	200,474,705	351,246,341		57.1
Overall			2015	317,517,978	467,414,159		68.0
			2016	181,267,336	368,430,660		43.3
			2017	265,083,149	594,818,522		44.6

¹ Avacon = Avacon Netz AG, BW = Bayernwerk Netz GmbH, Edis = E.DIS Netz AG, SHN = Schleswig-Holstein Netz AG.

 2 Federal states in which the respective DSO operates. 3 Share of federal state area covered by respective DSO.

⁴ RES curtailment costs in the respective DSO region as calculated in this study. ⁵ RES curtailment costs in the respective German federal states as published by the German Federal Network Agency (BNetzA, 2017d, 2018b). ⁶ Share of calculated to published RES curtailment costs.

Variables	Unit	1st Q.	2nd Q.	3rd Q.	4th Q.
Wind energy	[€/MW]	18	302	2,939	28,277
Wind energy	[€/MWh]	0.005	0.10	0.80	8.10

The costs only apply for regions that experienced RES curtailment in the three consecutive years from 2015-2017.

June 24, 2020 Tim Höfer and Reinhard Madlener