

How Large is the Economy-wide Rebound Effect?

David Stern Arndt-Corden Department of Economics, Crawford School of Public Policy 7th IAEE Asia-Oceania Conference 15 February 2020

Research Question:

 To what degree do energy efficiency improvements result in economy-wide reductions in energy use?

Research Question:

- To what degree do energy efficiency improvements result in economy-wide reductions in energy use?
- Important, because International Energy Agency et al. expect energy efficiency to contribute significantly to mitigating climate change

Fig. 1 World Energy Outlook 2016 energy intensity projections vs recent history

Climatic Change (2017) 143:537–545

Fig. 1 World Energy Outlook 2016 energy intensity projections vs recent history

Direct Rebound Effect

- Innovation increases energy efficiency reducing cost of energy services:
 - Use of energy services increases

Rebound Effect

$Rebound = 1 - \frac{Actual Saving}{Potential Saving}$

Partial Equilibrium Indirect Rebound Effects

• Changes in use of other energy services

Partial Equilibrium Indirect Rebound Effects

- Changes in use of other energy services
- Change in consumption of complementary and substitute goods / use of other inputs:
 - Changes in energy use across economy to produce those goods, services, inputs

Partial Equilibrium Indirect Rebound Effects

- Changes in use of other energy services
- Change in consumption of complementary and substitute goods / use of other inputs:
 - Changes in energy use across economy to produce those goods, services, inputs
- Reduction in energy used to produce energy

General Equilibrium Effects

 Changes in prices including price of energy

Intensity vs. Growth Effects

 Most of the rebound effect is a rebound in energy intensity, E/GDP

Intensity vs. Growth Effects

- Most of the rebound effect is a rebound in energy intensity, E/GDP
- But also increase in GDP:
 - Energy efficiency improvement is a TFP increase
 - Capital accumulation
 - Induced technical change?

Backfire or Jevons' Paradox

 Jevons (1865): *The Coal Question*
 "It is wholly a confusion of ideas to suppose that the economical use of fuel is equivalent to a diminished consumption. The very contrary is the truth."

Backfire: Rebound > 100%

• Rebound increases with K-E elasticity of substitution in production (Saunders, 1992)

- Rebound increases with K-E elasticity of substitution in production (Saunders, 1992)
- Rebound increases with elasticity of substitution between consumption goods (Lemoine, 2019)

- General equilibrium effects tend to:
 - Increase (decrease) rebound for innovations in energy intensive (extensive) sectors

- General equilibrium effects tend to:
 - Increase (decrease) rebound for innovations in energy intensive (extensive) sectors
- Energy production is energy intensive:
 - Reduction in energy use in energy supply sector reduces (R<1) or increases (R>1) rebound

Quantitative Evidence

- Historical evidence
- Analytical approach
- Computational approach
- Econometric approach

Historical Evidence

Energy Intensity by Per Capita Income 1800-2010

- Saunders (2008, Ener. Econ.):
 - CES production, energy augmenting technical change, constant energy and capital prices:

$$Y = \left(\gamma \left(K^{\beta} (A_L L)^{1-\beta}\right)^{\frac{\sigma-1}{\sigma}} + (1-\gamma) (A_E E)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

- Saunders (2008, Ener. Econ.):
 - CES production, energy augmenting technical change, constant energy and capital prices:

$$Y = \left(\gamma \left(K^{\beta} (A_L L)^{1-\beta}\right)^{\frac{\sigma-1}{\sigma}} + (1-\gamma) (A_E E)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

$$-R = \frac{1}{S_L} \left(S_E + S_L + (\sigma - 1)(1 - \beta) \right)$$

- Saunders (2008, Ener. Econ.):
 - CES production, energy augmenting technical change, constant energy and capital prices:

$$Y = \left(\gamma \left(K^{\beta} (A_L L)^{1-\beta}\right)^{\frac{\sigma-1}{\sigma}} + (1-\gamma) (A_E E)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

$$-R = \frac{1}{S_L} \left(S_E + S_L + (\sigma - 1)(1 - \beta) \right)$$

- For $\sigma = 0.67, S_E = 0.1, S_L = 0.63, \beta = 0.3$: $R \cong 79\%$

- Lemoine (2019):
 - Elasticity of substitution in consumption is 0.9
 - $-\bar{\sigma}=0.33$
 - -R = 38%

Computational Approach

- Turner (2009, *Ener. Econ*), sensitivity analysis of UK CGE model:
 - --13% to 322% rebound
 - Depends on elasticities of substitution

Computational Approach

- Rausch & Schwerin (in press, *IER*) small calibrated dynamic GE model
- Putty-clay assumption
- US data
- Rebound 102%

Econometric Estimates

- Adetutu *et al.* (2016, *Ener J.*):
 - Stochastic frontier model to estimate energy efficiency
 - Partial equilibrium, dynamic panel model to estimate effect on energy use

Econometric Estimates

- Adetutu *et al.* (2016, *Ener J.*):
 - Stochastic frontier model to estimate energy efficiency
 - Partial equilibrium, dynamic panel model to estimate effect on energy use
 - Short run rebound: 90%. Long-run: -36%

Econometric Estimates

- Adetutu *et al.* (2016, *Ener J.*):
 - Stochastic frontier model to estimate energy efficiency
 - Partial equilibrium, dynamic panel model to estimate effect on energy use
 - Short run rebound: 90%. Long-run: -36%
 - Simple dynamic structure:
 - If E declines in short run, it declines more in long run

Estimating the Rebound Effect

Using structural vector autoregressions to estimate the size of the economy-wide rebound effect

Collaborators

Stephan Bruns *U. Göttingen* Alessio Moneta Scuola Superiore Sant'Anna

Australian Research Council

Estimating the Rebound Effect

Estimating the Rebound Effect

SVAR Approach

- Reduced form VAR:
 - $x_t = \sum_{i=1}^p \Pi_i x_{t-i} + u_t$ $x_t = [\ln E_t, \ln Y_t, \ln P_t]'$
- Structural VAR:

$$x_t = \sum_{i=1}^p \prod_i x_{t-i} + B\varepsilon_t; VAR(\varepsilon_t) = I; u_t = B\varepsilon_t$$

• Identify *B* empirically using Independent Component Analysis

Advantages of the SVAR Approach

	Analytical Approach	CGE	Partial Equilibrium Econometric	SVAR
Empirical	*	*		
General equilibrium	*		*	
Exogeneity of shocks			*	

Identifying the Mixing Matrix, B

- # parameters in B > # parameters in $var(u_t)$
- Traditional approach: Impose restrictions on *B*
- Sign restriction approach
- Independent Component Analysis: Places conditions on ε_t

Independent Component Analysis

- From machine learning literature
- Assume elements of ε_t are independent and non-Gaussian
- ICA algorithms find linear combinations of u_t that are maximally independent according to various criteria:
 - Distance covariance
 - Maximum likelihood

- Negentropy maximization (FastICA)
- LINear non-Gaussian Acyclic Model

Data

- Estimate with US monthly data, 1992:1-2016:10; Quarterly data, 1973:1-2016:3
- Primary energy use and prices from US EIA
- Price = Energy cost / BTU
- Deseasonalized using X11 procedure
- Monthly GDP data from Macroeconomic Advisors, quarterly from BEA

US Monthly Energy Data

US Quarterly Energy Data

	ε_e	ε_y	ε_p		
Distance covariance					
Energy	-1.685	0.321	0.289		
GDP	0.091	0.506	0.026		
Energy price	-0.020	0.566	5.042		
Non-Gaussian Maximum Likelihood					
Energy	-1.500	-0.660	0.466		
GDP	-0.210	0.455	0.031		
Energy price	0.145	0.515	4.814		

Impulse Response Functions

Rebound effect

Model	1	2	3	4	5	6
Frequency	Monthly	Monthly	Quarterly	Quarterly	Quarterly	Quarterly
Method	Dcov	Ngml	Dcov	Ngml	Dcov	Ngml
Period	1992-2016	1992-2016	1973-2016	1973-2016	1992-2016	1992-2016
1 year	0.78	0.76	0.61	0.61	0.58	0.45
	[0.61,0.88]	[0.62,0.89]	[0.34,0.68]	[0.35,0.63]	[0.35,0.81]	[0.34,0.8]
2 years	0.94	0.91	0.9	0.9	0.91	0.77
	[0.76,1.04]	[0.76,1.04]	[0.57,1.03]	[0.6,0.97]	[0.58,1.2]	[0.58, 1.14]
4 years	1.01	0.99	1.16	1.17	1.09	1.01
-	[0.91,1.1]	[0.9,1.09]	[0.81,1.38]	[0.84,1.32]	[0.8,1.35]	[0.8,1.31]
6 years	1.01	0.99	1.23	1.24	1.07	1.03
	[0.95,1.08]	[0.94,1.06]	[0.94,1.47]	[0.96,1.45]	[0.87,1.3]	[0.88,1.28]

Notes: 0.90 confidence interval in brackets.

Control Variables

- Energy mix and industrial structure are major factors affecting energy intensity
- Control using:
 - Energy mix: energy quality
 - Industrial structure: industrial production

Monthly Energy Quality and Industrial Structure

Model	Frequency	Period	Method	1 year	2 years	4 years	6 years
1	Monthly	1992-2016	dcov	0.94	1.03	1.09	1.06
	5			[0.65,1.19]	[0.83,1.32]	[0.94,1.43]	[0.95,1.33]
2			noml		1.06	1.13	1.09
			0	[0.64,1.93]	[0.83,2]	[0.97,2.22]	[0.97,1.91]
3			fastICA	0.84	0.94	0.99	1.00
				[0.89, 1.03]	[0.91, 1.07]	[0.91, 1.08]	[0.94, 1.07]
4			LiNGAM	0.96	0.97	0.98	0.99
				[0.94, 0.98]	[0.95, 1]	[0.96, 1.01]	[0.98, 1.01]
5	Quarterly	1973-2016	dcov	0.72	0.85	0.93	0.97
				[0.52,1.42]	[0.66,1.92]	[0.65,1.84]	[0.64,1.64]
6			ngml	0.63	0.82	1.16	1.30
				[-0.07,0.63]	[-0.1,0.91]	[0.31,1.46]	[0.54,1.84]
7			fastICA	0.59	0.83	1.16	1.28
				[0.55, 1.13]	[0.61, 1.41]	[0.78, 1.43]	[0.87, 1.36]
8			LiNGAM	0.71	0.84	0.97	1.03
				[0.64, 0.78]	[0.77, 0.93]	[0.89, 1.08]	[0.96, 1.12]

Rebound Effect: 5 Variable VAR

Notes: Bootstrapped 0.90 confidence interval in brackets.

Conclusions and Policy Implications

 No consensus, but economy-wide rebound could be high

Conclusions and Policy Implications

- No consensus, but economy-wide rebound could be high
- Energy efficiency innovation probably of limited value in climate mitigation
 - Especially with existing binding efficiency mandates (Fullerton & Ta)

Conclusions and Policy Implications

- No consensus, but economy-wide rebound could be high
- Energy efficiency innovation probably of limited value in climate mitigation
 - Especially with existing binding efficiency mandates (Fullerton & Ta)
- Increasing costly mandates can have large effects (Fullerton & Ta)

More information:

- Website: www.sterndavidi.com
- Blog: stochastictrend.blogspot.com
- E-mail: david.stern@anu.edu.au
- Twitter: @sterndavidi

Fig. 2 Energy intensity projection errors. The *dates* refer to the publication date of the *WEO*. The percentage error is the mean annual difference between the percentage rate of change in actual energy intensity and projected energy intensity from the base year of the respective *WEO* through 2015 for *WEO-1998* forward. *Positive values*, therefore, indicate that energy intensity declined by less than expected and so the level of energy intensity was higher than projected in 2015 (2010 from *WEO-1994* to *WEO-1996*). Because the base year of *WEO-2015* is 2013 and of *WEO-2016* is 2014, it is possible to compute a projection error for these two latest reports

Independent Component Analysis

• Identifying the mixing matrix

 $u_t = B\varepsilon_t$

- If all elements of ε_t are mutually independent and non-Gaussian (with a maximum of one exception), then *B* is identifiable up to a column permutation and sign (Comon, 1994)
- Label shocks by the variable they impact most

Distance Covariance

Distance covariance (Székely, 2007) can measure linear and nonlinear dependence of random variables

Distance Covariance

- Matteson and Tsay (2017)
- Minimize $dCOV(\varepsilon(\theta))$
- θ vector of rotation angles of Givens rotation matrices
- $B(\theta) = DQ(\theta)$; *D* Choleski factor of $\hat{\Sigma}_u$, *Q* product of Givens rotation matrices
- $\hat{\varepsilon}_t(\theta) = B(\theta)^{-1} \hat{u}_t$

Non-Gaussian Maximum Likelihood

- Lanne *et al*. (2017)
- ML assuming mutual independence of shocks and specific distributions for each
- At most one can be Gaussian
- We assume t-distribution

	ε_e	ε_y	ε_p		
Distance covariance					
Energy	-1.549	0.511	0.052		
GDP	0.163	0.706	0.028		
Energy price	0.051	-0.524	8.585		
Non-Gaussian Maximum Likelihood					
Energy	-1.550	0.421	0.140		
GDP	0.155	0.725	0.072		
Energy price	-0.048	-0.743	8.848		