Efficiency, energy cultures and the low-carbon grid

Associate Professor Janet Stephenson Centre for Sustainability University of Otago

IAEE conference 2020

Centre for Sustainability Kā Rakahau o Te Ao Tūroa

Perspectives on efficiency

	Reduce total consumption
Technologies	e.g. insulation, efficient appliances

Energy cultures and efficiency

How many admirals does it take to change a lightbulb?

- Technical constraints?
- Weak incentives?
- Alterna ve porities?
- Rational centiveness?
- Informa A. I deficiencies?
- Capita constitutts?
- Risk averseness?
- Status quo bias?

Dew, N., Aten, K., & Ferrer, G. (2017). How many admirals does it take to change a light bulb? Organizational innovation, energy efficiency, and the United States Navy's battle over LED lighting. *Energy research & social science*, 27, 57-67.c

Technologies

The energy cultures framework

- Stephenson, J., Barton, B., Carrington, G., Gnoth, D., Lawson, R., Thorsnes, P. (2010): Energy Cultures: A framework for understanding energy behaviours. *Energy Policy*. 38: 6120–6129.
- Stephenson, J., et al. (2015). The energy cultures framework: Exploring the role of norms, practices and material culture in shaping energy behaviour in New Zealand. *Energy Research & Social Science*, 7, 117-123.

An 'actor-centred' framework

Cultural attributes – interactive and dynamic

Outcomes of these dynamics

Internally consistent and thus habituated energy culture

Energy cultures with different efficiency outcomes

Lawson, R., Williams, J. (December 2012). Understanding Energy Cultures. Annual conference of the Australia and New Zealand Academy of Marketing (ANZMAC), University of New South Wales, Adelaide

Efficiency as a cultural change

New material culture

US Navy's inefficient energy culture: entrenched and self-reinforcing

US Navy's inefficient energy culture: entrenched and self-reinforcing

Fig 2. Internal elements of U.S. Navy energy culture.

US Navy's inefficient energy culture: entrenched and self-reinforcing

Fig 2. Internal elements of U.S. Navy energy culture.

Navy also locked in by external influences

Demand peaks and efficiency of the electricity grid

Daily & annual peak electricity demand is driven by households

Dortans, C., Anderson, B., Stephenson, J., & Jack M., *Estimating the Technical Potential of Residential Demand Response in New Zealand: A Summary of Results* (GREEN Grid Technical Report, 2018). <u>http://hdl.handle.net/10523/8616</u>; Dortans, C (2019) MSc Thesis, University of Otago

Increasing wind and solar will increase supply variability; grid-edge changes could increase peaks

Jack, M. W., Suomalainen, K, *Potential future changes to residential electricity profiles-findings from the GridSpy dataset*, GREEN Grid project report (2018). http://hdl.handle.net/10523/8074

Low-carbon grid will be shaped by changes at the grid edge

Pathways to NZ's energy transition

New technologies & practices to reduce daily peaks

Jack, M. W. Suomalainen, K. Dew, J. J. W., and Eyers, D., A minimal simulation of the electricity demand of a domestic hot water cylinder for smart control, Applied Energy, 211, 104 (2018).

Demand shifting to reduce daily peaks

Hot water systems, heat pumps, fridges?

Figure 5: Estimated daily effects of the peak load shifting scenario on total electricity generation profile assuming 100% HW unit availability

Dortans, C., Anderson, B., Stephenson, J., & Jack M., Estimating the Technical Potential of Residential Demand Response in New Zealand: A Summary of Results (GREEN Grid Technical Report, 2018). <u>http://hdl.handle.net/10523/8616</u>

Efficient lighting to reduce winter peak demand

9% reduction in winter peak

Winter morning 300 MW Winter evening 500 MW

Dortans, C., Jack, M., Anderson, B., & Stephenson, J. (forthcoming). Lightening the load: quantifying the potential for energy efficient lighting to reduce peaks in electricity demand. *Energy Efficiency*.

Reducing daily and winter peaks

Time-sensitive efficiency and flexibility – a pathway to the low-carbon transition?

Summary: the growing efficiency landscape

	Reduce total consumption
Technologies	Insulation, efficient appliances, etc

... and shifting focus from energy efficiency to carbon efficiency

Our main funder:

Our co-funders:

Ministry of Business, Innovation & Employment

Energy Efficiency and Conservation Authority Te Tari Tiaki Pūngao

Questions?

