

The Economics of Flexibility

Richard Green

This is the web version of my talk, with notes added in bubbles that should be visible if you run the mouse over them.

14 February 2020

What is flexibility?

- Flexibility is the ability to respond to the changing needs of the power system
 - Generators
 - Demand response
 - Storage
 - Transmission

Does it matter?

- £6bn per year cost saving for a 50g/kWh power system
- £4.5bn per year for a 100g/kWh system

© Imperial College Business School

Strbac et al. (2016) for National Infrastructure Commission

Will we deliver it?

- Flexibility involves a range of services from a range of providers, some currently unpriced
- How do we coordinate everything?
- What are the right incentives?
- How large are the transactions costs?

Why is flexibility needed?

Constrained Optimisation

(making the power system work)

- Generation = Demand + Losses
 + net Storage + net Exports
- Line Flows ≤ Limits
- Voltages within acceptable ranges (reactive power)
- Generators meeting their own constraints
 - Minimum on/off times
 - Maximum ramp rates
 - Minimum stable generation
- Reserves sufficient, given risks and response times

Imperial College

Business School

Generation in Great Britain

Monthly averages

Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16 Jan-17 Jan-18

Variable Generators

Coal, Gas and Oil, versus Wind and Solar

Source: Electric Insights (data are for GB)

8

Variable Generators (x2)

Wind and Solar versus Coal, Gas and Oil

© Imperial College Business School

Source: Electric Insights (data are for GB)

Renewable Generators...

(wind and solar)

- may be more likely to...
 - be in the wrong place relative to load
 - be at the wrong time relative to load
 - have too little inertia

The price of flexibility

Day-ahead and Real-time Prices

GB data, quarterly averages

When does "free" electricity mean higher prices?

When the system's not flexible...

Imperial College

Business School

Load, PV Output and Prices

California, 2012 and 2016

See also Hirth (2015) <u>http://dx.doi.org/10.1049/iet-rpg.2014.0101</u>

Could free power be too expensive to use?

The importance of inertia

Post-fault system frequency

Acceptable wind output

System may not be able to absorb it

✤ NEWS FUTURE NET ZERO EVENTS VIDEOS & PODCASTS

Efficiency & Environment, Infrastructure, Technology

National Grid awards £328m contracts to manage stability of electricity grid

This new approach is expected to save consumers up to £128m over the six-year period

Contracts with 5 providers at 7 sites, giving 12.5 GVA.s of inertia

The value of flexibility will rise over time

Marginal Value of Storage

(Strbac et al., 2012)

Imperial College Business School The value of storage over time

© Imperial College Business School & Department of Electronic & Electrical Engineering

The value of flexibility sources depends on what else is available

Imperial College

Any substitutes for storage? **Business School**

The need to multi-task

System Value of Energy Storage

Arbitrage

✓ Participate in day-ahead energy market

Balancing services

✓ Participate in real-time balancing market

Network Support

✓ Reducing need for T & D network reinforcements

Frequency regulation services

Providing primary/secondary / tertiary frequency regulation services

Capacity market

 Contributing to meeting peak demand, reducing need for peaking plant

Imperial College

System Value of Energy Storage **Business School**

Balancing Great Britain

National Grid Costs, financial years

Getting the right incentives

Imperial College Business School Multi-product auction design

- What's the right mix of fast and slow response to buy?
 - How valuable is each type?
 - What is on offer?
- Greve and Pollitt suggest a Vickrey-Clark-Groves auction
 - System operator calculates the value of each combination
 - Chooses combination that maximises value minus bid
 - Pays selected providers their contribution towards maximised social value
 - Value with that provider, minus value without
 - Incentive compatible best to bid your true cost!

Do we pay enough for flexibility?

Imperial College Business School Interconnector Economics £/MWh MC in exporting region Social Value Unit **Commercial Value** Cost of I/C MC of energy avoided in importing region Commercial I/C Capacity Price Equalisation GW Optimal I/C Capacity

Imperial College Business School Interconnectors with Reserve

Thank you