

Controlling wind farms to enable market participation

Dennice Gayme Department of Mechanical Engineering

Support from the national science foundation is gratefully acknowledged

Significance of renewably supplied electricity

Estimated Renewable Energy Share of Global Electricity Production, End-2018

Significance of renewably supplied electricity

Wind power around the world

Total power in gigawatts (installed in 2018)

Estimated Renewable Energy Share of Global Electricity Production, End-2018

Significant sustained wind energy growth

Wind is becoming a significant proportion of world-wide electricity supply

Global

4

Significant sustained wind energy growth

Wind is becoming a significant proportion of world-wide electricity supply

U.S. electric capacity additions and retirements, 2019 gigawatts (GW)

planned additions

(24 GW)

Wind integration challenges- our model

Model of wind as "negative demand/must take/free" poses fundamental system problem

- Underlying assumption: niche supplier
- Incentive: maximize power output without regard for the grid

Wind integration challenges- our model

Model of wind as "negative demand/must take/free" poses fundamental system problem

- Underlying assumption: niche supplier
- Incentive: maximize power output without regard for the grid

What happens when wind penetration gets too high to make this model technically/economically feasible?

Wind integration challenges- our model

Model of wind as "negative demand/must take/free" poses fundamental system problem

- Underlying assumption: Niche supplier
- Incentive: maximize power output without regard for the grid

What happens when wind penetration gets too high to make this model technically/economically feasible? BIG SYSTEM PROBLEM!

Goes far beyond balancing

- Reactive power
- Regulation
- Voltage support

Wind integration challenges

Wind is becoming a significant proportion of our electricity supply

- BUT it is still treated like a niche supplier "must take"
 - NO incentive to adjust output to track demand

Critical grid services that keep the system functioning properly (maintain balance, power quality etc.) are currently provided by conventional generators

- More wind means a smaller percentage of resources contributing
 - 1. Conventional generators need to compensate (big economic issue!)
 - 2. Wind energy will be likely required to provide these services

Changing how we treat wind farms

Two key issues that wind farm operators need to overcome for wind to move beyond current role as a "niche" energy provider

- Obtaining accurate predictions for wind farm power output levels over a wide range of conditions (A modeling problem)
- 2. Ensuring that wind farms can successfully operate within the current and anticipated energy markets of the future (A control problem)

"<u>WindPark</u>" by <u>Philipp Hertzog</u> is licensed under <u>CC BY-SA 3.0</u>

Changing how we treat wind farms

Two key issues that wind farm operators need to overcome for wind to move beyond current role as a "niche" energy provider

- Obtaining accurate predictions for wind farm power output levels over a wide range of conditions (A modeling problem)
- 2. Ensuring that wind farms can successfully operate within the current and anticipated energy markets of the future (A control problem)
 - Frequency regulation
 - Price arbitrage –aerodynamic storage

"<u>WindPark</u>" by <u>Philipp Hertzog</u> is licensed under <u>CC BY-SA 3.0</u>

Size and scale of the physical problem

- Recall frequency regulation for 30s to 30 minutes
- Typical turbine 100 m
- Operational speed 10 m/s
- Spacing 7D apart
 - Inter travel turbine time
 - $\frac{700 \text{ m}}{10 \text{m/s}} = 70 \text{ seconds}$
- 10 row farm 700 s (12 min)

A control oriented wind farm model

- Need a physical model that can account for the time-varying nature of wake interactions that is:
 - 1. Captures the behavior of the farm as the conditions change (e.g. changes in turbine inlet velocity)
 - 2. Simple enough to be implemented for real-time control (e.g. enable participation in energy markets)

Horns Rev 1: Photograph: Christian Steiness

Dynamic wake model for wind farm control

Frequency regulation

- Generation and load imbalances affect grid frequency
- Frequency regulation services compensate for these imbalances

• Secondary regulation 30 sec to 10s of minutes

Market: Secondary frequency regulation

 Generator plants follow a regulation signal from the grid operator to help keep the power grid in balance

Market: Secondary frequency regulation

- Reduce bulk power supply (i.e. do not maximize power output)
 - Derate the turbine by some percentage $\alpha imes 100\%$
- Allows the farm to ramp up when needed by some amount

 $P_0 = (1 - \alpha) P_{max}$

 $\Delta P = \gamma P_{max}$

- Previous work using wind turbines
 - [Buckspan et al. 2012, 2013; Aho et al. 2013, 2014; Jeong et al. 2014]

Frequency regulation: economic trade-offs

- Direct economic trade-off between bulk power supply and regulation
 - Ideally we want up-ramp capability $\Delta P = \gamma P_{max}$ where $\gamma > \alpha := \text{derate}$
- Rose and Apt (2014): Evaluated cost of using wind for regulation (in the current must take environment)
 - Assumed regulation capability (increased production) = derate amount
 - Compared cost of curtailment to up-regulation prices from ERCOT (Texas)
 - Regulation not cost effective for> 99% of the hours
- Ela et al. (2014)
 - Allowing wind to provide regulation reduces system costs by \$19M in CA

Frequency regulation: technical challenges

- Previous work using wind turbines [Buckspan et al. 2012, 2013; Aho et al. 2013, 2014; Jeong et al. 2014]
- Failure to take wake effects into account (i.e. just controlling the turbines individually) fails even in small farms

Model-based controller for wind-farm frequency regulation

• Use the time-varying wake model, which captures both wake interactions and wake advection within a closed loop controller to enable a wind farm to participate in frequency regulation.

Real world testing: PJM regulation market

- Signals are based on area control error (ACE),
 - a combined measure of power imbalance and frequency deviation
- PJM has two regulation markets

- Test on 48 cases (qualification and historical signals) for 8% regulation
 - Three different initial conditions in wind farm
 - Derates of 4% and 6%

Real world benchmarking- we qualify

$$P_{\rm ref}(t) = P_0 + \Delta Pr(t)$$

- We always pass!
- Better at RegD

 $P_{bulk} = (1 - \alpha)P_{max}$ $\Delta P = \gamma P_{max} > \alpha P_{max}$

- Significantly less than full derate 4%<<8%
- More efficient means more \$\$\$

Power tracking behavior

Sample results: 8% regulation

 $P_{\rm ref}(t) = P_0 + \Delta Pr(t)$

Initial condition 2

Summary

- Model-based receding horizon control shows promising results in allowing wind farms to track a power signal for secondary frequency regulation
 - Significantly reduces the bulk power opportunity cost (in LES with ADM)
 - Feedback (error correction) eliminates the need for a full flow field
 - Taking into account time-varying wake interactions is key

Assumptions

- Constant or steady wind condition for the problem timescale of interest –suitable with strong prevailing wind conditions
 - Requires wind farms to be able to decide when to participate based on forecasting
- Trajectory is given/known- this can be overcome

Aerodynamic Storage

surges

0

100

200

300

-300

-200

-100

Problem Setup

Maximize revenue
$$\sum_{t=1}^{T} \lambda(t) \sum_{i=1}^{N} \delta_t P_i(t)$$
 $\lambda : LMP$ subject to $P_j(t) \leq P_{rated}(t)$ $\forall j \in \mathcal{N}$ \models Rated power $0 \leq P_1(t) \leq P_1^{max}(t)$ $0 \leq P_2(t) \leq P_2^{max}(t) + \alpha P_{12}^{stored}(t)$ \models Available power $P_{12}^{stored}(t + T_d) = P_1^{max}(t) - P_1(t)$ \models Power storedTurbine 1Edge (wake) e_{12} Connecting turbines

Problem Setup

Maximize revenue

max
$$\sum_{t=1}^{T} \lambda(t) \sum_{i=1}^{N} \delta_t P_i(t)$$

$$\lambda$$
 : *LMP*

subject to wind farm constraints

Our feasibility study neglects subsidies and assumes

- Perfect knowledge of prices, wind speeds, etc.
- Regularly aligned wind farm arrangements
- Idealized wind farm aerodynamic model

Efficiency and turbine spacing parameter sweep

- Historic price and wind data (low volatility)
- 84-turbine aligned wind farm

• Minimal revenue potential under historic price volatility

Under higher price volatility

We expect price volatility to increase in the future. Introduce a price volatility index

$$\Psi = 1 - \frac{1}{T} \int_0^T E_\lambda(t) \, dt$$

• Defined over adjacent clearing times to match aerodynamic time scales

$$E_{\lambda}(t) = \begin{cases} \exp\left(1 - \frac{\lambda(t+1)}{\lambda(t)}\right), & \text{if } \lambda(t) > 0 \& \frac{\lambda(t+1)}{\lambda(t)} > 1, \\ 0, & \text{if } \lambda(t) \le 0 \& \lambda(t+1) > 0, \\ 1, & \text{otherwise}, \end{cases}$$

Under higher price volatility

- Revenue increase is substantial
- Energy storage mechanism is responding to price fluctuations

Summary

- Wind farms can do more than just maximize power output
 - Trade offs: Economics of wind operators versus the overall grid health
- Market models and economic models taking that into account might change the analysis and overall system impact of wind

Acknowledgements

Collaborators

Charles Meneveau, Johan Meyers

Special thanks to Charles Meneveau for publically sharing the JHU LES code

Students and Postdocs Chengda Ji, Carl Shapiro, Genevieve Starke

Back-up slides

Moving wind to main stream

- Obtaining accurate predictions for wind farm power output levels over a wide range of conditions (Build a better model)
- Ensure that wind farms can successfully operate within the current and anticipated energy markets of the future (Control the wind farm)
 - Markets that provide grid services

