

Energy Transition in Transport Role of Electric Vehicles

Amela Ajanovic Energy Economics Group Vienna University of Technology

> IAEE, 14.02.2020, Auckland

- Introduction
- Historical developments
- Electric vehicles
 - Economic assessment
 - Environmental assessment
- Conclusion

based on commercial energy

- oil products
- least-diversified
- energy import dependency

Paris Declaration on Electro-Mobility and Climate Change & Call to Action:

- more than 100 million EVs
- 400 million two and three-wheelers

nergy conomics

roup

Total final electricity consumption by sector (Mtoe)

WIEN

Development of the global stock of rechargeable EVs

Advantages

Disadvantages

- ✓ Energy efficiency
- ✓ Energy security
- ✓ Air pollution
- ✓ Noise reduction

- Costs
- Driving range
- Charging time
- Charging infrastructure

Km per day in cities

WIE

Battery capacity for different types of EVs

Economic assessment

The costs per km driven C_{km} are calculated as:

$$C_{km} = \frac{IC \cdot \alpha}{skm} + P_f \cdot FI + \frac{C_{O\&M}}{skm}$$

[€/100 km driven]

IC.....investment costs [€/car] αcapital recovery factor skm....specific km driven per car per year [km/(car.yr)] Pf.....fuel price incl. taxes [€/litre] C_{0&M}...operating and maintenance costs FI.....fuel/energy intensity [litre/100 km; kWh/100 km]

A capital recovery factor (α) is the ratio of a constant annuity to the present value of receiving that annuity for a given length of time. Using an interest rate (z), the capital recovery factor is: $z(1 + z)^n$

$$\alpha = \frac{z(1+z)^n}{(1+z)^n - 1}$$

n....the number of annuities received.

Economic aspects

Total costs of service mobility of various types of EV in comparison to ICE cars

Scenario for development of investment costs

Monetary measures

- road taxes
- annual circulation tax
- company car tax
- registration tax
- fuel consumption tax
- congestion charges

Non-monetary measures

- free parking spaces
- possibility for EVs drivers to use bus lanes
- wide availability of charging stations
- permission for EVs to enter city centers and zero emission zones

WIEN

Environmental assessment

WIE

CO₂ emissions per km driven for various types of EV in comparison to conventional cars (power of car: 80kW)

Electricity generation in the EU 28

CO2 per kWh electricity generated in different European countries

Data source: tsp,2014

Environmental assessment

WIE

CO₂ emissions per km driven for BEVs powered by grid electricity in different countries

Oil and lithium reserves

ergy

onomics roup

Car-oriented mobility

Car-oriented transport development

Towards Sustainable Mobility

...unnecessary travel and reduce trip distances

...towards more sustainable modes

...transport practices and technologies

EVs ...part of the solution...cost reductions, improvement of battery characteristics, as well as development of infrastructure

➢ Most of the policies implemented will be abolished with the increasing number of EVs

➢Future policy design should ensure high environmental benefits of EVs.

Full environmental benefit – only if EVs are powered by electricity generated from renewable energy source

≻New mobility behavior

ajanovic@eeg.tuwien.ac.at

Ajanovic A., Haas R. (2019). Economic and Environmental Prospects of Battery Electric- and Fuel Cell Vehicles: A Review. Fuel Cells. Wiley Online Library. DOI: 10.1002/fuce.201800171

Ajanovic, A., Haas, R. (2019). **On the Environmental Benignity of Electric Vehicles**, Journal of Sustainable Development of Energy, Water and Environment Systems, 7(3), pp 416-431, DOI: https://doi.org/10.13044/j.sdewes.d6.0252

Ajanovic A., Haas R. (2018). Economic prospects and policy framework for hydrogen as fuelinthetransportsector.EnergyPolicy123(2018)280–288.https://doi.org/10.1016/j.enpol.2018.08.063

Ajanovic A., Haas R. (2018). Electric vehicles: solution or new problem?. Environ Dev Sustain (2018). <u>https://doi.org/10.1007/s10668-018-0190-3</u>

Ajanovic A. (2015). **The future of electric vehicles: prospects and impediment**s. WIREs Energy Environment 2015. doi: 10.1002/wene.160, 2015

Fuel cell electric passenger car stock: 11.200

Main battery cell manufactures

